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1 Basic Equations of Fluid Mechanics

1.1 What is fluid mechanics?

• Fluid dynamics is the study of finding the velocity field v(x, t), the density field

ρ(x, t), and the pressure field p(x, t).

• Conditions for the continuum approximation

The size of the system (i.e., characteristic length over which the velocity field varies)

should be much longer than the mean free path l or the molecular diameter d

(∼ 10−10m).

l ≃ 1

nπd2
∼ 1013

( n

106m−3

)−1

m.

For example, in the interstellar medium, the number density of gas molecules n is

about 106m−3 and the mean free path l is 10−3pc.

1.2 Equation of continuity and mass conservation

Consider the mass of fluid entering and leaving from a given volume V due to a flow.

• The mass of fluid leaving through a small surface, dS, which is part of the surface

S of the volume, during a time inteval ∆t can be written as (see Figure 1)

Outgoing mass = density × outgoing volume = ρ (∆t v · n dS), (1.1)

where n is the outward normal vector of the surface dS. Therefore, the total mass

of fluid leaving the volume V in time ∆t is

∆t

∮
S

ρv · n dS = ∆t

∫
V

∇ · (ρv) dV (Gauss’ theorem). (1.2)

V

dS
dS

S
∆ tv

t
t +∆ t

v∆ t

x0

x

Figure 1: Left: Flow leaving from small part dS of the surface of the volume V. Right:

Streamlines and motion of a fluid particle.
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• Using Eq. (1.2), the mass conservation equation can be written as

d

dt

∫
V

ρ dV = −
∫
V

∇ · (ρv) dV. (1.3)

This means that the decrease in mass within V equals the mass of the outgoing

fluid. Combining both sides into one yields∫
V

[
∂ρ

∂t
+∇ · (ρv)

]
dV = 0. (1.4)

Since this equation holds for any V , the integrand must vanishes anywhere. There-

fore
∂ρ

∂t
+∇ · (ρv) = 0.

(
or

∂ρ

∂t
+ div(ρv) = 0.

)
(1.5)

This equation is called the equation of continuity and describes the time evolution

of the density of the fluid.

• The vector j = ρv in the divergence in the above equation is called the mass flux

density (vector). The direction of the vector indicates the direction of the flow,

and the length represents the mass of fluid passing through unit area perpendicular

to the flow per unit time. The mass flux1 is the surface integral of the mass

flux density as shown on the left side of Eq. (1.2). Since Eq. (1.4) indicates mass

conservation, the equation of continuity (1.5) is also called the equation of mass

conservation.

1.3 Euler’s equation and momentum conservation

(a) Acceleration of fluid

• Particle acceleration
dv

dt
≡ lim

∆t→0

v(t+∆t)− v(t)

∆t
. (1.6)

It is defined by the difference in velocity of the same particle at different times.

• The time partial derivative of velocity at position x, which is used in fluid mechanics,

is
∂v

∂t
≡ lim

∆t→0

v(x, t+∆t)− v(x, t)

∆t
. (1.7)

This is not an “acceleration” because it is not a difference in velocity with respect

to the same fluid particle.

1In general, fluxes indicate flow rates across a surface. There are various types of fluxes depending on

what is flowing, such as the energy flux, momentum flux, heat flux, and charge current, in addition to

the mass flux. In electromagnetism, electric and magnetic fluxes are another type of fluxes.
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• Expression for the acceleration of a fluid particle

To obtain the acceleration, we take the difference of the velocities along its trajectory

x(t,x0) of the fluid particle (see the right panel of Fig. 1, x0 is the initial position

of the fluid particle).

Dv

Dt
≡ lim

∆t→0

v(x+ v∆t, t+∆t)− v(x, t)

∆t
. (1.8)

The time derivative defined along the flow is called the Lagrangian derivative.

Furthermore, the velocity v(x+ v∆t, t+∆t) is rewritten in the Taylor expansion.

In the one-dimensional case,

v(x+ v∆t, t+∆t) = v(x, t) +
∂v

∂t
∆t+ v

∂v

∂x
∆t. (1.9)

and in the three-dimensional case

v(x+ v∆t, t+∆t) = v(x, t) +
∂v

∂t
∆t+ (v · ∇)v∆t, (1.10)

or

v(x+ v∆t, t+∆t) = v(x, t) +
∂v

∂t
∆t+ (v · grad)v∆t.

Therefore, substituting Eq. (1.10) into (1.8), we obtain the expression for the accel-

eration of fluid as

Dv

Dt
=

∂v

∂t
+ (v · ∇)v =

∂v

∂t
+ (v · grad)v. (1.11)

The expression for the acceleration on the right side is called the Eulerian form.

(b) Euler’s equation

The force exerted by the pressure on a fluid particle is considered next. The force acting

on the volume V is derived in the same way as in the equation of continuity. The force

exerted on a small surface dS by the external pressure p is −pn dS. Thus, the total force

due to the external pressure acting on the whole surface of the volume V is given by

−
∮
S

pn dS = −
∫
V

∇p dV. (1.12)

Problem 1. Derive Eq. (1.12) using Gauss’s divergence theorem.

We can now write down the equation of motion. Let us consider the conservation of

the momentum for a volume V . Assume that no force other than pressure acts on the

volume. Let us also assume that the surface S of V moves with the fluid and that no fluid

flows into or out of the volume. In this case, the conservation of the momentum for the

fluid in the volume V is expressed as∫
V

ρ
Dv

Dt
dV = −

∫
V

∇p dV. (1.13)
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Thus, we finally obtain the equations of motion in fluid mechanics, the so-called Euler’s

equation, as

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p. or

∂v

∂t
+ (v · grad)v = −1

ρ
∇p. (1.14)

Euler’s equation describes the time evolution of the velocity of fluid. If there is an external

force f acting on the unit mass of the fluid other than pressure (such as gravity), we can

add it to the right-hand side

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ f . (1.15)

(c) Conservation form of Euler’s equation

• The time variation of the momentum per unit (fixed) volume is

∂

∂t
(ρv) = v

∂ρ

∂t
+ ρ

∂v

∂t
= −v∇ · (ρv)− ρ(v · ∇)v −∇p. (1.16)

In the second equality, we used the equation of continuity (1.5) and Euler’s equa-

tion (1.14). Let us rewrite this equation using the components vi of the vector v.

The subscript i is 1, 2, or 3, indicating the x, y, and z components, respectively.

Then, Eq. (1.16) is rewritten as

∂

∂t
(ρvi) = −vi

∂

∂xj

(ρvj)− ρvj
∂vi
∂xj

− ∂p

∂xi

. (1.17)

where the subscript j also takes 1, 2, and 3. The product of components with the

same subscript AjBj is assumed to take a sum from 1 to 3 (Einstein notation) and

thus equal to the scalar product A ·B. Such a sum is also taken in Eq. (1.17).

• Equation (1.17) is eventually written in the following form (conservation form of

Euler’s equation)
∂

∂t
(ρvi) +

∂

∂xj

Πij = 0, (1.18)

where the tensor Πij is given by

Πij = δijp+ ρvivj, (1.19)

using Kronecker’s delta δij, and called the momentum flux density tensor. The

first term of this tensor represents the momentum flow across the surface caused by

the pressure acting on the surface, and the second term represents the momentum

flow due to the fluid directly passing through the surface.
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• Integrating Eq. (1.18) over a volume V with the fixed surface S, we obtain the

integral form of the momentum conservation equation as

d

dt

∫
V

ρvi dV =

∫
V

∂

∂t
(ρvi) dV = −

∮
S

Πijnj dS. (1.20)

The right-hand side represents the total momentum flowing out of the surface S.

Thus, the tensor Πij represents the flow of the i-component of the momentum across

the surface perpendicular to the basis vector ej.

Problem 2. For the volume V that deforms together with the flow used in Eq. (1.13),

clarify whether or not the following equation holds.

d

dt

∫
V

ρv dV =

∫
V

ρ
Dv

Dt
dV (1.21)

(Hint: Instead of integrating by volume, consider summing up the infinitesimal mass

elements dM = ρdV .)

(d) Additional remarks on Euler’s equation

• Viscous effects may be important in real fluids, but they are not considered in Euler’s

equation. A fluid whose viscosity is not important is called an ideal fluid. For many

flows in the universe, the ideal fluid approximation is valid. The equation of motion

that takes viscous effects into account is called the Navier-Stokes equation.

• Boundary conditions: If there is an object in the fluid, conditions are required

at its surface (boundary). In an ideal fluid, it is required that the fluid does not

penetrate the inside of the object. Therefore, the boundary condition at the surface

of the object is given by

vn = v · n = u · n (1.22)

where n is the normal vector of the surface and u is the velocity of the object

(surface). In an ideal fluid, the tangential velocity along the surface may be different

between the fluid and the object.

1.4 Condition for an adiabatic flow

• There are two independent thermodynamic quantities (e.g., pressure and density).

Therefore, in addition to the equation of continuity, we need another equation to

determine the time evolution of the thermodynamic quantities. In an ideal fluid, the

invariance of the entropy (or an adiabatic flow) is often assumed. In other words,

the entropy s per unit mass is assumed to be invariant for “each fluid particle”.

This is expressed using the Lagrangian derivative as

Ds

Dt
=

∂s

∂t
+ v · ∇s = 0 (1.23)
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This is the condition for an adiabatic flow2.

• A simpler case is often set that the entropy is constant over the entire fluid region

at a certain time. In this case, the entropy remains constant thereafter due to the

adiabatic condition.

s = const. (1.24)

Such a flow is called an isentropic flow.

• In the adiabatic process of an ideal gas, each fluid particle satisfies the relation

p = Kργ, (1.25)

where γ = cp/cV is the specific heat ratio, and the coefficient K is a function of the

entropy s of each fluid particle (see Eq. [1.65]). Since K is constant throughout the

fluid for an isentropic flow, this equation is often used for an isentropic flow. If there

is heating or cooling due to radiation, the adiabatic condition or Eq. (1.25) does

not hold. Even in such cases, however, Eq. (1.25) may be used approximately using

another constant Γ instead of the specific heat ratio γ. In those cases, Eq. (1.25) is

called the polytropic relation and Γ is the polytropic index.

• In an isentropic flow, the differential of the enthalpy per unit mass, h, is given by

dh = Tds+ V dp =
1

ρ
dp, (1.26)

where V = 1/ρ is the specific volume. From this, in an isentropic flow, Euler’s

equation (1.14) can be written as

∂v

∂t
+ (v · ∇)v = −∇h. (1.27)

• Even in the case of a non-isentropic flow, if the pressure p is a function of only

the density ρ, as in the polytropic relation (1.25), Eq. (1.27) can be satisfied, by

defining h ≡
∫
(1/ρ)dp. In general, a fluid in which p is a function of only ρ is called

a barotropic fluid (otherwise it is called a baroclinic fluid).

1.5 Bernoulli’s equation

• Consider a time-independent flow (steady flow) in which the adiabatic condition

holds3. In steady flow, ∂v/∂t = 0. In addition to this, using the vector formula

(v · ∇)v =
1

2
∇v2 − v × (∇× v) or vj

∂vi
∂xj

=
1

2

∂v2

∂xi

− ϵijkvjϵklm
∂vm
∂xl

(1.28)

2From this adiabatic condition and the equation of continuity (1.5), we also obtain entropy conser-

vation equation as ∂(sρ)/∂t+∇ · (sρv) = 0.
3Even in a barotropic fluid, where the pressure p is a function of only the density, by using h =∫

(1/ρ)dp, Eq. (1.27) is satisfied, leading to Eq. (1.30) and and Bernoulli’s equation (1.31).
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(where ϵijk is the Levi-Civita symbol), Euler’s equation (1.14) becomes

1

2
∇v2 +

1

ρ
∇p− v × (∇× v) = 0. (1.29)

Furthermore, taking the scalar product of this equation and v, and noting that the

third term on the left side is perpendicular to v, we obtain

1

2
v · ∇v2 +

1

ρ
v · ∇p = v · ∇

(
1

2
v2 + h

)
= 0. (1.30)

In the first equality of the above equation, we used the relation ∇h = T∇s+ 1
ρ
∇p,

which is derived from dh = Tds + 1
ρ
dp, and the adiabatic condition for steady flow

v · ∇s = 0.

• Consider a streamline. A streamline is a line tangent to a velocity vector at each

point on the line. In a steady flow, the streamlines represent the trajectories of fluid

particles. Thus, the left and middle sides of Eq. (1.30) represent the gradients along

the streamlines. Therefore, the following equation is satisfied along each streamline.

1

2
v2 + h = const. (1.31)

In general, this constant is different for each streamline. Equation (1.31) is called

Bernoulli’s equation. Bernoulli’s equation shows that the velocity increases as

the pressure decreases and that the pressure has its maximum at the point where

the velocity vanishes (i.e., at the stagnation point).

• A similar equation is derived for a fluid in a gravitational field. In this case we

use Euler’s equation (1.15) including the external force. Using the gravitational

potential ϕg, the external force per unit mass is given by f = −∇ϕg, and thus

Bernoulli’s equation in the gravitational field becomes

1

2
v2 + h+ ϕg = const. (1.32)

Problem 3. Derive the vector formula (1.28).

1.6 Energy conservation equation

• The energy per unit volume of a fluid is given by the sum of its kinetic energy and

internal energy, 1
2
ρv2+ρe, where e is the internal energy per unit mass. Consider the

time variation of the energy of the fluid. The adiabatic condition (1.23) is assumed

to hold.

• The time derivative of the kinetic energy becomes

∂

∂t

(
1

2
ρv2
)

=
1

2
v2

∂ρ

∂t
+ ρvi

∂vi
∂t

. (1.33)
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Furthermore, using the equation of continuity and Euler’s equation, we obtain

∂

∂t

(
1

2
ρv2
)

= −1

2
v2

∂

∂xi

(ρvi)− ρvivj
∂vi
∂xj

− vi
∂p

∂xi

= −1

2
v2

∂

∂xi

(ρvi)− ρvj
∂

∂xj

(
1

2
v2 + h

)
+ ρviT

∂s

∂xi

. (1.34)

In the above, we used 1
ρ
∇p = −T∇s+∇h.

• Next, the time derivative of the internal energy is

∂

∂t
(ρe) = ρ

∂e

∂t
+ e

∂ρ

∂t
= ρT

∂s

∂t
+ h

∂ρ

∂t

= −ρviT
∂s

∂xi

− h
∂

∂xi

(ρvi). (1.35)

In the above, we used de = Tds + (p/ρ2)dρ and h = e + p/ρ for the second equal-

ity. The adiabatic condition and the equation of continuity are used for the third

equality.

• Adding Eq. (1.34) and (1.35), we obtain

∂

∂t

(
1

2
ρv2 + ρe

)
= −

(
1

2
v2 + h

)
∂

∂xi

(ρvi)− ρvi
∂

∂xi

(
1

2
v2 + h

)
. (1.36)

Putting the terms on the right-hand side together, we finally obtain the energy

conservation equation.

∂

∂t

(
1

2
ρv2 + ρe

)
+ div

[
ρv

(
1

2
v2 + h

)]
= 0. (1.37)

The vector in the divergence is called the energy flux density vector.

• In steady flow, both the mass flux (ρvidSi) and the energy flux through the flow

tube, which is surrounded by streamlines, are constant from the energy conserva-

tion equation (1.37) and the equation of continuity (1.5), respectively, where dSi

is the cross section of the tube. The ratio of these fluxes is also constant, yielding

Bernoulli’s equation (1.31).

• Additional remarks

– When an external force f acts, the power exerted by the external force, ρv ·f ,
is added to the right-hand side of Eq. (1.37).

– If there is heating (positive or negative) due to radiation absorption/emission

or chemical reactions, a source term for the heating rate per unit time and

unit volume must be added to the right-hand side of Eq. (1.37). In addition to

Eq. (1.37), the equation for energy transport by radiation etc. is also needed.
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• In general, the conservation form of the hydrodynamic equations (and other physical

equations) is expressed in the form

∂

∂t
(... density) + div (... flux density) = 0. (1.38)

Problem 4. Derive the extended expression of the energy conservation equation (1.37)

for the case where there is a static external gravitational field ϕg(r), and also find the

expression for the energy flux density vector. Note that the energy per unit volume of

fluid in an external gravitational field is 1
2
ρv2 + ρe+ ρϕg.

1.7 Incompressible fluid and its potential flow

• In an incompressible fluid, the density ρ is approximately constant. Liquids can be

considered to be incompressible fluids. More specifically, the condition for the in-

compressible fluid approximation to hold is v ≪ cs, where cs is the velocity of sound.

Furthermore, for the incompressible fluid approximation to hold, the variation time

T of the flow must also be long enough as T ≫ L/cs, where L is the characteristic

length of the flow. Therefore, the incompressible fluid approximation is also valid

for subsonic gaseous flows.

• Basic equations for incompressible fluids are

Eq. of continuity: ∇ · v = 0, (1.39)

Euler’s equation:
∂v

∂t
+ v · ∇v = −∇

(
p

ρ

)
. (1.40)

• Potential flow of an incompressible fluid: When the velocity is expressed with

a potential ϕ(r, t) as

v = gradϕ, (1.41)

the flow is called a potential flow. Potential flow is ”irrotational” because the

vortex is written as

rotv = ∇× (∇ϕ) = 0. (1.42)

The equation governing a potential flow is obtained from Eq. (1.39) as

△ϕ = 0 (Laplace’s equation). (1.43)

Furthermore, using Eqs. (1.28) and (1.42), Euler’s equation (1.40) is rewritten as

∇
(
∂ϕ

∂t
+

1

2
v2 +

p

ρ

)
= 0, (1.44)

and we obtain
∂ϕ

∂t
+

1

2
v2 +

p

ρ
= constant. (1.45)
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An example of incompressible potential flow: “Flow around a sphere”

Consider a potential flow of incompressible ideal fluid around a rigid sphere of radius R

at rest. Away from the sphere, the flow is uniform, v = u (constant).

• We use a coordinate system in which the origin is at the center of the sphere and

the z-axis is in the direction of the flow. By symmetry, the flow (and the potential

ϕ ) is axisymmetric about the z-axis.

• Boundary conditions. At the surface of the sphere (r = R), vr = 0, or

∂ϕ

∂r
= 0 at r = R. (1.46)

Far away from the sphere, v = u. Then, using u = |u|, we obtain the potential as

ϕ = u · r = u r cos θ at r → ∞. (1.47)

• In general, axisymmetric solutions of Laplace’s equation are expressed with the

Legendre polynomials Pl as

ϕ =
∞∑
l=0

(
Al r

l +
Bl

rl+1

)
Pl(cos θ). (1.48)

From the shape of the system and the boundary conditions, it is expected that only

the first two terms in the summation need to be used.

ϕ =

(
A0 +

B0

r

)
+

(
A1 r +

B1

r2

)
cos θ. (1.49)

(The Legendre polynomials are P0 = 1, P1 = x, P2 = (3x2 − 1)/2, . . . )

• The coefficients, Ai, Bi are determined by the boundary conditions.

- The condition (1.47) at r → ∞ gives A0 = 0, A1 = u.

- The condition (1.46) at r = R is
∂ϕ

∂r
= −B0

R2
+

(
u− 2B1

R3

)
cos θ = 0.

Since this holds for all θ, we obtain B0 = 0, B1 =
1
2
R3u, and

ϕ = u · r
(
1 +

R3

2r3

)
. (1.50)

- The uniqueness of the solution to Laplace’s equation assures Al = Bl = 0 for l ≥ 2.

• The velocity field is given by

v = u+
R3

2

ur2 − 3(u · r)r
r5

= u+
R3

2r3
(u− 3u cos θer). (1.51)

At the surface of the sphere (r = R),

v(r = R, θ) = −3

2
u sin θeθ (1.52)

Both poles of the sphere (θ = 0 and π) are stagnation points. Figure 2 shows the

stream lines of this flow.
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Figure 2: The flow around a sphere. The stream lines obtained from the velocity field are

drawn.

• The pressure is obtained from Eq. (1.45). Since this flow is steady, we have

1

2
v2 +

p

ρ
= C. (1.53)

Letting p0 be the pressure at infinity, we obtain C = 1
2
u2 + p0/ρ. Therefore,

p(r, θ) = p0 +
1

2
ρ
[
u2 − v(r, θ)2

]
. (1.54)

At the surface of the sphere,

p = p0 +
1

2
ρu2

(
1− 9

4
sin2 θ

)
(1.55)

and thus the pressure attains its maximum at the stagnation points. Furthermore,

since the pressure is symmetrical between the front and back sides (θ ≷ π/2)

of the surface (see eq.[1.55]), we find that the drag force on the sphere vanishes

(d’Alembert’s paradox).

Problem 5. Derive Eqs. (1.51), (1.52), and (1.55).

(ASIDE) In order to obtain the realistic drag force on the sphere, we need to include

the viscous effect and solve the Navier-Stoke equation:

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν △ v, (1.56)

where ν is the kinematic viscosity. The obtained flow have non-zero vortex (i.e., rot v ̸=
0). The drag force acting on the sphere is expressed as F = 1

2
CDπR

2ρu2, where the

dimensionless coefficient CD is given by

CD =

{
12ν/(Ru) for large ν (Stokes’ law),

∼ 1 for small ν.
(1.57)
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1.8 Appendix: Thermodynamics of ideal gas

• Equation of state

p =
nmol

V
RT = nkBT =

ρ

m
kBT, (1.58)

where nmol is the mole number, R(= kBNA) is the molar gas constant, kB(= 1.38×
10−23[J/K]) is the Boltzmann constant, NA(= 6.02×1023) is the Avogadro constant,

n is the number density of gas molecules, and m is the mass of a molecule.

• Specific heat (heat capacity per unit mass)

- isochoric specific heat (constant V ) cV = T

(
ds

dT

)
V

=

(
de

dT

)
V

=
1

γ − 1

kB
m

. (1.59)

- isobaric specific heat (constant p) cp = T

(
ds

dT

)
p

=

(
dh

dT

)
p

=
γ

γ − 1

kB
m

. (1.60)

In the above, the heat capacity ratio γ is given by cp/cV . We also used cp − cV =

kB/m (Mayer’s relation). The specific heat capacities and their ratio γ are assumed

to be constants below.

• Sound velocity, cs

c2s ≡
(
∂p

∂ρ

)
s

= γ
p

ρ
(p ∝ ργ in an adiabatic process). (1.61)

• Internal energy per unit mass, e

e = cV T =
1

γ − 1

kB
m

T =
1

γ − 1

p

ρ
=

c2s
γ(γ − 1)

. (1.62)

• Enthalpy per unit mass, h (= e+ p/ρ)

h = cpT =
γ

γ − 1

p

ρ
=

c2s
γ − 1

. (1.63)

• Entropy per unit mass, s

ds =
1

T

[
de+ pd

(
1

ρ

)]
= cV d ln

(
p

ργ

)
. (1.64)

Therefore4

s = cV ln

(
p

ργ

)
+ A, or p = A′es/cV ργ (A,A′ are constants). (1.65)

4Some readers may feel it uneasy that the dimensional quantity, p/ργ , is the argument of the logarith-

mic function in Eq. (1.65). But, it should be noticed that Eq. (1.65) can be rewritten as the difference

from the standard state (p0, ρ0, s0), s− s0 = cV ln[(p/p0)/(ρ/ρ0)
γ ], by setting A = s0 − cV ln(p0/ρ

γ
0).
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2 Compressible Fluids

2.1 Sound waves

• Assumption

– Wave amplitude is small enough.

– Sound waves in a stationary gas with uniform density and temperature.

• Perturbations

Write the pressure, density, and velocity as follows.

p = p0 + p1, ρ = ρ0 + ρ1, v = v1. (2.1)

The quantities with subscript 1 are small perturbations and represent sound waves.

The quantities with subscript 0 represent the unperturbed state of the background

and are constant in this case. For sound waves, the fluctuation time (or the oscilla-

tion period) is often so short compared to the heat transfer time that the fluctua-

tions are adiabatic. Therefore, s1 = 0. In such a case, the following equation holds

between p1 and ρ1.

p1 =

(
∂p

∂ρ

)
s

ρ1. (2.2)

The coefficient (∂p/∂ρ)s is given by(
∂p

∂ρ

)
s

= c2s = γ
p0
ρ0

= γ
kBT0

m
. (2.3)

where cs is the (adiabatic) sound velocity and the second and third equalities hold

for ideal gases.

• Wave equation for sound

Find the equations for the perturbations. Substituting Eq. (2.1) into the equation

of continuity and Euler’s equation and neglecting the second- or higher-order terms

for small perturbations, we obtain the following two equations.

∂ρ1
∂t

+ ρ0 divv1 = 0, (2.4)

∂v1

∂t
+

1

ρ0
grad p1 = 0. (2.5)

Substituting Eq. (2.5) into the time derivative of Eq. (2.4) to eliminate v1, and using

Eqs. (2.2) and (2.3) to eliminate p1, we obtain

∂2ρ1
∂t2

− c2s △ ρ1 = 0 (2.6)

This is the wave equation with the propagation velocity cs and describes sound

waves.
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• The solution for a traveling plane wave can generally be written as

ρ1 = f(k · x− ωt), (2.7)

where ω = cs|k|. The plane wave propagates in the direction k. From Eqs. (2.5)

and (2.2), The velocity perturbation is obtained as

v1 =
ρ1
ρ0

cs
k

|k|
(2.8)

The sound wave is a longitudinal wave because its velocity is in the direction of

propagation. In particular, for sine waves given by

ρ1 = A exp[i(k · x− ωt)], (2.9)

where k is the wave number vector and ω is the angular frequency. An

arbitrary wave is represented by a superposition of sine waves with various k.

Problem 6. Derive Eq. (1.64). Also calculate the sound velocity in HI interstellar gas

with temperature of 100K.

2.2 Waves with finite amplitudes: simple waves, rarefaction

waves, Riemann invariants

Consider plane waves with finite amplitudes. We assume isentropic motion (dp =

c2s dρ). For the one-dimensional wave varying in x-direction, the equation of continuity

and Euler’s equation can be written as.

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0, (2.10)

∂v

∂t
+ v

∂v

∂x
+

c2s
ρ

∂ρ

∂x
= 0. (2.11)

(a) Simple waves

• Moreover, we assume that the density is written as ρ = ρ(v). The waves that satisfy

this assumption are called simple waves. Then, the equation of continuity (2.10)

can be rewritten as
dρ

dv

∂v

∂t
+

(
v
dρ

dv
+ ρ

)
∂v

∂x
= 0. (2.12)

Dividing this equation by (dρ/dv) yields the following equation describing the time

evolution of v.
∂v

∂t
+

(
v + ρ/

(
dρ

dv

))
∂v

∂x
= 0. (2.13)

Similarly, Euler’s equation (2.11) is transformed as

∂v

∂t
+

(
v +

c2s
ρ

dρ

dv

)
∂v

∂x
= 0. (2.14)
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Since the two differential equations (2.13) and (2.14) should be equal, so

dρ

dv
=

ρ

cs
or

dρ

dv
= − ρ

cs
. (2.15)

Equation (2.15) gives a relation between the velocity v and the density ρ. In fact,

the integration of Eq. (2.15) yields

v = ±
∫ ρ cs

ρ
dρ. (2.16)

Note that the sound velocity cs is a function only of the density since it is isentropic

motion.

• Substituting Eq. (2.15) into (2.14) yields

∂v

∂t
+ (v ± cs)

∂v

∂x
= 0. (2.17)

It is clear that the density ρ satisfies a similar equation.

∂ρ

∂t
+ (v ± cs)

∂ρ

∂x
= 0. (2.18)

By comparing these partial differential equations and the adiabatic condition (1.23),

we can find that both the velocity v and the density ρ are constant along one of the

lines C± in the x-t plane whose slopes are given by

dx

dt
= v ± cs. (2.19)

These lines are called characteristics. For simple waves, the corresponding char-

acteristics is a straight line since the right-hand side of Eq. (2.19) is constant along

the characteristic. If ρ and v are given as functions of x at time t0, the distributions

of ρ and v at any time can be obtained by finding the characteristic through each

point (t0, x) with the differential equation (2.19) (since ρ and v are constant along

the characteristic). This solution method of partial differential equations is known

as the method of characteristics.

Problem 7. Show that in an ideal gas, Eq. (2.16) is rewritten as

v = ± 2

γ − 1
(cs − cs,0). (2.20)

where cs,0 is the sound velocity in a stationary gas and γ > 1. Also show that the slope

of the characteristic (2.19) is equal to (γ + 1)v/2 ± cs,0, and that the upper limit of the

magnitude of the velocity |v| is given by 2cs,0/(γ − 1) when cs < cs,0.

17



(b) Rarefaction waves

As a example of simple waves, let us consider a rarefaction wave (also called an ex-

pansion fan) in an ideal gas.

Problem Setup: There is a solid wall (piston) at x = 0 and a gaseous fluid at rest is

filled in the space with x > 0. The initial density and sound velocity of gas are constants

given by ρ0 and cs,0, respectively. At time t = 0, the solid wall (or the piston) begins to

be pulled in the negative direction of x with a velocity of −V (V > 0, see Figure 3, top).

This motion of the piston generates a rarefaction wave in the gas. Since at t = 0 the gas

at rest satisfies Eq. (2.16), the gas motion becomes a simple wave at subsequent instants.

We further assume that the velocity of the piston is constant at t > 0.

Solution

• Even after the piston starts moving, the gas far enough away from the piston remains

in the initial state (v = 0, ρ = ρ0). On the other hand, the gas near the piston is

pulled by the piston and has a negative velocity (v < 0). Thus, dv/dx is positive,

which means an expansive motion. As a result, the density decreases near the

piston, and then dρ/dx > 0. Since the gradients of v and ρ have the same sign, a

positive sign is chosen in Eqs. (2.15)-(2.20). Therefore, v and ρ are constant on the

characteristic C+, and C+ is a straight line.

• The information that the piston has started moving is transmitted through the gas

at x > 0 at the sound velocity cs,0. The gas that has received this information moves

to the negative direction of x. The characteristic C+ through the origin of the x-t

plane given by
x

t
= cs,0 (2.21)

is the boundary. The gas remains stationary on the far side of the boundary (x/t >

cs,0), and it has an expansive motion with v < 0 and dv/dx > 0 on the near side

(x/t < cs,0). The latter motion is the rarefaction wave.

• The velocity in the region where x/t < cs,0 is obtained as follows. There exist other

characteristics C+ passing through the origin x = t = 0 with slopes different from

Eq. (2.21). Because of the sudden start of the piston at x = t = 0, the nearby gas

also experiences sudden and strong negative acceleration, which makes the velocity

field discontinuous at x = t = 0. As a result, the slope of the characteristics C+

through x = t = 0, which equals v + cs, can have various values smaller than cs,0.

Then, using Eq. (2.20), we obtain for x/t < cs,0,

x

t
= v + cs =

γ + 1

2
v + cs,0, or v = − 2

γ + 1

(
cs,0 −

x

t

)
. (2.22)

This is the velocity field v(x, t) in the rarefaction wave.

• There are two types of the gas flow in the region closer to the piston, depending on

the speed of the piston.
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Figure 3: A rarefaction wave generated by the pulling of the piston. The schematic (top),

the characteristics C+ (bottom left), the characteristics C−, and the path lines (bottom

right) for the case of V = cs,0 and γ = 5/3. In the bottom left panel, the characteristics

C+ and the motion of the piston are plotted by gray lines and the black line, respectively.

The two thick gray lines show the boundaries of the rarefaction wave. In the bottom right

panel, gray and black lines show the characteristics C− and the path lines, respectively.

(i) If the speed of the piston, V , is lower than the upper limit 2cs,0/(γ − 1), then

the characteristic C+ with v = −V given by

x

t
= −γ + 1

2
V + cs,0 (2.23)

is the other boundary of the rarefaction wave. In the region between this

characteristic and the piston, the gas flows uniformly with the velocity of the

piston and the gas density is constant. As an example, the bottom left panel

of Figure 3 shows the characteristics C+ in each region for the case of V = cs,0
and γ = 5/3 while the bottom right panel shows the characteristics C− and

the path lines for the same case.

(ii) If V > 2cs,0/(γ − 1), the velocity of the piston exceeds the upper limit of the

gas velocity, and thus, the gas cannot catch up with the piston and a vacuum
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region is formed. The boundary between the vacuum region and the rarefaction

wave is given by the characteristic C+ of x/t = −2cs,0/(γ − 1).

Problem 8. Write down the sound velocity and the density as functions of x and t in

regions of the rarefaction wave and both sides, for the cases of (i) and (ii). Also check

that the functions are continuous at the boundaries between these regions.

Problem 9. Solve the equation for the characteristics (2.19) in the rarefaction wave

and obtain the equation of C− in the form x = f(t). Also solve the equation for the fluid

path, dx/dt = v, and obtain the path lines in the same way. Let these two curves pass

through the point t = t0, x = cs,0t0.

(ASIDE) Let us take a closer look at the flow in Figure 3. The flow in Figure 3 consists

of three regions: 1. the stationary gas, 2. the rarefaction wave, and 3. the uniform gas

flow moving with the piston. The characteristics C+ in Region 3 originate from the piston

moving at the velocity -V, while C+ in Region 1 come from the piston at rest at t < 0.

The characteristics C+ in Region 2 between these regions are considered to originate from

the piston during its acceleration so that the velocity of the gas in the rarefaction wave

takes −V < v < 0. Along each characteristic C+, the information of the piston motion

at that time propagate and determines the velocity and density of the gas on C+.

The velocity field of the rarefaction wave (region 2) is independent of the “final velocity”

of the piston, −V . This is because the gas in Region 2 only receives the information that

the piston is accelerating, but not the information about the final velocity. On the other

hand, the gas in Region 3 receives the information about the final velocity and moves at

the same velocity as the piston.

The path lines and C− are straight in Regions 1 and 3 since the flow is uniform. On the

other hand, they become curved in the rarefaction wave. The gas gradually accelerates

(to a negative velocity) and reaches −V within the rarefaction wave. The angles between

path lines and C− gradually decrease in the downstream direction because the sound

velocity (i.e., the velocity of information propagation) becomes slower.

(c) Riemann Invariants

Next we investigate more general waves in which v and ρ changes independently (but

assuming isentropic motion). Adding or subtracting Eq. (2.10)×cs/ρ to Eq. (2.11), we

obtain
∂v

∂t
± cs

ρ

∂ρ

∂t
+ (v ± cs)

(
∂v

∂x
± cs

ρ

∂ρ

∂x

)
= 0. (2.24)

We now introduce two variables defined by

J± = v ±
∫

cs
ρ
dρ. (2.25)

Using these, we can rewrite Eq. (2.24) in a simple form[
∂

∂t
+ (v ± cs)

∂

∂x

]
J± = 0. (2.26)
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These equations show that J+ and J− are constant along characteristics C+ and C−,

respectively. The invariants J± are called Riemann invariants. The propagation of in-

formation along each characteristic make the Riemann invariants constant. In particular,

for a polytropic ideal gas, the Riemann invariants are given by

J± = v ± 2

γ − 1
cs. (2.27)

The partial differential equation (2.26) can be solved by finding the characteristics as in

the case of the simple waves.

Problem 10. Derive Eq. (2.26).

Problem 11. Find the Riemann invariants J± for the rarefaction wave examined in (b)

and each region on both sides of it.

(d) Generation of shock waves

Consider a wave packet propagating in the x direction with a density distribution as shown

in the figure below. Assume that it is a simple wave and that the density and velocity

are constant along characteristics C+. Its propagation velocity is v + cs. Since the sound

velocity is greater where the density is higher, the denser part of the wave propagates

faster than the other parts. As a result, the point of maximum density gradually over-

takes the less dense leading part and eventually the density distribution ρ(x) becomes

multivalued (t = 4∆ in Figure 5). In reality, multivalued densities are not allowed, and a

density discontinuity is created at the front of the wave. Then the velocity and pressure

distributions also become discontinuous. This discontinuity is called a shock wave. Gen-

erally, a wave with a density distribution decreasing in the direction of propagation will

create a shock wave if it travels a sufficient distance before attenuating. Shock waves are

discussed in detail in the next section.

t

x

dx
dt = v

C+

v+cs
C－

v−cs
t=0 t=D t=2D t=4D

r

x

Figure 4: Characteristics C± and path line (left).

Figure 5: Propagation of a wavepacket and generation of a shock wave (right).
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2.3 Stable discontinuities: shock waves and contact discontinu-

ities

• We consider a surface at which quantities such as the density and the velocity are

discontinuous. Generally, a surface of discontinuity moves, but here we consider a

coordinate system in which the discontinuity surface is at rest. The normal direction

of the discontinuity surface is taken as the x-axis, and the discontinuity surface is

set at x = 0. We label the region with x < 0 as 1 and the positive x region as 2.

The quantities in these regions are represented by subscripts 1 and 2.

• Conditions for stable surfaces of discontinuity: For a surface of discontinuity

to exist stably, the mass flux, energy flux, and momentum flux (vector) across the

surface must be continuous, which is required by conservations of the mass, energy,

and momentum. Since the expressions of the flux densities are given by Eqs. (1.5),

(1.19), and (1.37), the continuities of them yield the following equations.

ρ1v1 = ρ2v2 = j, (2.28)

j[h1 +
1

2
(v21 + v21,y + v21,z)] = j[h2 +

1

2
(v22 + v22,y + v22,z)], (2.29)

p1 + ρ1v
2
1 = p2 + ρ2v

2
2, (2.30)

jv1,y = jv2,y, (2.31)

jv1,z = jv2,z, (2.32)

where v1 and v2 are x-components of the velocities in Region 1 and 2; and j is the

x-component of the mass flux density. A discontinuity surface that does not satisfy

these conditions instantly splits into multiple discontinuities or rarefaction waves,

as will be seen in §§2.5.

• The stable surfaces of discontinuity that satisfy the above conditions are classified

into two types. Discontinuities of the first type have non-zero j and are called shock

waves. The second type with j = 0 is called a tangential discontinuity.

(a) Shock waves

• Coordinate system moving with the shock wave

Dividing Eqs. (2.31) and (2.32) by the non-zero mass flux density j, we find that

vy and vz are continuous. In the following, we use the coordinate system where

vy,i = vz,i = 0 to examine the shock wave. The direction of the x-axis is determined

so that v1, v2 > 0 (j > 0). Then, Region 1 where x < 0 is upstream and is called

the pre-shock region, and Region 2 where x > 0 is downstream and is called the

post-shock region.
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• Coordinate-independent relations in shock waves

Equation (2.30) yields

j2 =
p2 − p1
V1 − V2

, (2.33)

where Vi = 1/ρi is the specific volume. Since the right hand side includes only ther-

modynamics quantities, it is independent of the coordinate system. From Eq. (2.33),

we can see that either p2 > p1 and V1 > V2, or p2 < p1 and V1 < V2. As we will see

later, the law of increasing entropy shows that the former case is always realized.

That is, the pressure and density are higher at the post-shock region than at the

pre-shock region. From Eqs. (2.28) and (2.33), we obtain

|v1 − v2|2 = j2(V1 − V2)
2 = (p2 − p1)(V1 − V2). (2.34)

Equation (2.29) is rewritten with Eq. (2.33) and vy,i = vz,i = 0 as

h2 − h1 =
1

2
j2(V 2

1 − V 2
2 ) =

1

2
(V1 + V2)(p2 − p1). (2.35)

Furthermore, noting that h = e+ pV , we also obtain

e2 − e1 =
1

2
(V1 − V2)(p1 + p2). (2.36)

• Shock adiabat

Generally, the enthalpy (or the internal energy) can be expressed by a function of

the density and pressure using the equation of state. Substituting such a expression

into Eq. (2.35) (or eq. [2.36]) we can obtain the pressure at the post-shock p2 as a

function of V2 for given p1 and V1 at the pre-shock region. This relation in the p2-V2

plane is called a shock adiabat or a Hugoniot curve.

If a thermodynamic quantity is given, then, we can obtain all other thermodynamic

quantities using the shock adiabat and the equation of state. Furthermore, from

Eqs. (2.33) and (2.34), we also obtain j, v2, and v1 (and the propagation velocity of

shock against the gas in the pre-shock region is equals to −v1). Thus the degree of

freedom of a shock wave is one.

(b) Tangential discontinuity

In this case with j = 0, the pressure is continuous but vy and vz can be discontinuous.

However, tangential discontinuities in which the tangential velocity is discontinuous are

unstable due to a hydrodynamic instability, as will be seen in §§3.3. Therefore, stable

tangential discontinuities are limited to cases where the the tangential velocity is con-

tinuous. Such tangential discontinuities are called contact discontinuities. In contact

discontinuities, thermodynamic quantities other than pressure become discontinuous. The

composition of fluid substances can also be discontinuous. The surface of the contact dis-

continuity moves with the fluid.
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2.4 Shock waves in an ideal gas

• Let us derive shock adiabats of an ideal gas. For an ideal gas, the (specific)

enthalpy is given by h = γ
γ−1

pV . Substituting this into Eq. (2.35) and divide it by

h1, we obtain
p2
p1

V2

V1

− 1 =
γ − 1

2γ

(
V2

V1

+ 1

)(
p2
p1

− 1

)
. (2.37)

This can be rewritten as

V2

V1

=
Ap2/p1 + 1

p2/p1 + A

(
=

ρ1
ρ2

=
v2
v1

)
, (2.38)

where the constant A is given by

A ≡ γ − 1

γ + 1
(< 1). (2.39)

Equation (2.38) gives the relation between p2 and V2, i.e., the shock adiabats (see

Figure 6). Even in the limit of strong shock (p2/p1 → ∞), the specific volume

decreases only to V2/V1 = A. We also obtain

V2

V1

− 1 = − 2

γ + 1

p2/p1 − 1

p2/p1 + A
. (2.40)

Using Eq. (2.40), we obtain j, v1 − v2, and the Mach number in Region 1 M1 as

functions of p2.

j2 =
γ + 1

2

(
p2
p1

+ A

)
p1
V1

, (2.41)

|v1 − v2|2 =
2

γ(γ + 1)(p2/p1 + A)

(
p2
p1

− 1

)2

c2s,1, (2.42)

M2
1 ≡ v21

c2s,1
=

γ + 1

2γ

(
p2
p1

+ A

)
. (2.43)

The last equation shows M1 > 1 for p2 > p1, indicating that the normal velocity

is always supersonic in the pre-shock region and that shock waves propagate at a

supersonic velocity against the pre-shock region.

Moreover, the post-shock quantities can be expressed as functions of M1.

p2
p1

=
2γ

γ + 1
M2

1 − A,
V2

V1

=
2γ

γ + 1
M−2

1 + A. (2.44)

• Entropy increase due to shock waves

From Eqs. (1.65) and (2.38), the change in the entropy is obtained as

s2 − s1 = cV ln

[
p2
p1

(
V2

V1

)γ]
= cV ln

[
p2
p1

(
Ap2/p1 + 1

p2/p1 + A

)γ]
. (2.45)
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Figure 6: Shock adiabat (black line) and Poisson’s adiabat (gray line) for ideal gas with

γ = 5/3. For V2 < V1, the shock adiabat is above Poisson’s adiabat due to the increase in

the entropy. The left panel is the full view and the right is the magnified one for V2 < V1.

Differentiating this with p2 gives

ds2
dp2

=
cVA(p2 − p1)

2

p2(Ap2 + p1)(p2 + Ap1)
(2.46)

and it is always positive. Since the entropy must increase with a shock wave, we

find that p2 > p1. The entropy increase for a weak shock wave is given by

s2 − s1 =
cVA

3(1 + A)2

(
p2 − p1

p1

)3

(for p2 − p1 ≪ p1) . (2.47)

• Generation and propagation of a shock wave by a piston

In §2.2, we saw that when the piston is pulled at a velocity of −V , a rarefaction

wave is generated in the region where x > 0. Conversely, a shock wave is generated

in the fluid at x < 0 pushed by the piston with velocity −V (Figure 7). The gas

is at rest in the pre-shock region (Region 1), where the shock wave has not yet

reached. On the other hand, in the post-shock region (Region 2), the gas flows at

the same velocity of the piston, −V . Thus we obtain v1 − v2 = V as a function of

the pressure ratio p2/p1 from Eq. (2.42). Also, the propagation velocity of the shock

wave against the pre-shock gas is obtained from Eq. (2.43) since it equals |v1|.

Problem 12. Derive Eqs. (2.38), (2.42), and (2.43).

Problem 13. Verify that M1 > 1. Also show that the Mach number at post-shock,

M2(= v2/cs,2), is less than unity.

2.5 Evolution of initial discontinuities: the Riemann problem

• Riemann problem

Consider arbitrary initial discontinuities. If an initial discontinuity does not satisfy
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Figure 7: Shock wave by a piston. Figure 8: Pressure distribution in Sod’s problem.

the conditions (2.28)-(2.30) for stable discontinuity surfaces, it generally splits into

some stable discontinuities, such as rarefaction waves, shock waves, and contact

discontinuities, and they move apart. The problem of solving the generation and

propagation of the new discontinuities for an arbitrary initial discontinuity in an

ideal gas is called the Riemann problem.

• Riemann problem without the velocity jump

Let us consider a special case of the Riemann problem in which gases are at rest on

both sides of the initial discontinuity, and there is no velocity jump. Let the surface

of the initial discontinuity be at x = 0, and let the initial pressures and densities on

both sides be denoted by p1, ρ1 for x > 0; and p2, ρ2 for x < 0, respectively5. We

also assume that p2 > p1. We examine the time evolution of this discontinuity at

t > 0.

– This initial condition causes a flow in the x direction, from the high-pressure

region x < 0 to the low-pressure region x > 0. As a result, a rarefaction wave

with dv/dx > 0 appears in x < 0, and a shock wave propagates in x > 0

(Figure 2.4). The pressure and velocity are constant in the region between the

rarefaction wave and the shock wave. Let these values be p3 and v3 (and set

this region as 3).

– Since this rarefaction wave has a negative dρ/dv, the negative sign is cho-

sen in Eqs. (2.15)-(2.20). Similar to Eqs. (2.21) and (2.23), both ends of the

rarefaction wave is given by two characteristics C−

x

t
= −cs,2 and

x

t
=

γ + 1

2
v3 − cs,2, (2.48)

respectively. Since the pre-shock gas is at rest in this case, the propagation

velocity of the shock wave is given by “v1”. Also using Eq. (2.43), the position

5Note that the arrangement of Regions 1 and 2 is opposite to the case of §§2.3, which causes the

inversion of signs in some equations.
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of the shock wave, xsh, is given by

xsh

t
=

√
γ + 1

2γ

(
p3
p1

+ A

)
cs,1. (2.49)

– In Region 3, there is a boundary between gases that were in contact at the

surface of the initial discontinuity, and it is the surface of a contact disconti-

nuity. Generally, the entropy (density and temperature) differs on both sides

of a contact discontinuity. The position of the contact discontinuity surface is

x/t = v3.

– Determination of v3 and p3: From Eq. (2.20) for the rarefaction wave, we find

that the velocity v3 satisfies

v3 =
2

γ − 1
(cs,2 − cs,3) =

2cs,2
γ − 1

[
1−

(
p3
p2

) γ−1
2γ

]
, (2.50)

where the adiabatic relation between cs and p is used in the last equality.

Since v3 is the velocity difference between the both sides of the shock wave,

the following equation also holds for v3.

v3 =

√
2

γ(γ + 1)(p3/p1 + A)

(
p3
p1

− 1

)
cs,1. (2.51)

The equality of these two expressions for v3 determines p3 and v3.

– The well-known Sod’s problem is the above case where p2/p1 = 10, ρ2/ρ1 = 8.

For γ = 1.4, we obtain p3/p1 = 3.03130 (noting that c2s,2/c
2
s,1 = p2/ρ2/(p1/ρ1)).

The Sod’s problem is useful for a test for compressible hydro-dynamical simu-

lation codes.

Problem 14. Verify that the pressure ratio p3/p1 takes the above value in the Sod’s

problem, and find the ratio v3/cs,1. When ρ3 and ρ′3 denote the densities on the larger-x

side and the smaller-x side of the contact discontinuity, respectively, find the ratios ρ3/ρ1
and ρ′3/ρ1.

• Riemann problem with a velocity jump

In general, the Riemann problem with a velocity jump can be classified into the

following six cases, depending on the velocity jump between the two sides. In all

cases, there is a contact discontinuity at the boundary between gases that were

in contact at the initial discontinuity. First, we consider the cases of compressive

velocity fields with v2 > v1. The arrangement of Regions 1 and 2 is the same as in

the above.

(i) When the initial velocity jump |v2 − v1| is equal to that of the shock wave,

Eq. (2.34), the initial discontinuity remains as a shock wave and propagates in

Region 1 (i.e., on the low-pressure side).
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(ii) When the velocity jump |v2 − v1| is smaller than Eq. (2.34), it requires an

additional expansive motion, and thus a shock wave and a rarefaction wave

appear and propagate on the low-pressure side and the high-pressure side,

respectively. Their arrangement is the qualitatively same as in the case without

the velocity jump. By replacing the left-hand sides of Eqs. (2.50) and (2.51)

by |v3 − v2| and |v1 − v3|, respectively, we can obtain v3 and p3, as done above.

(iii) When the velocity jump |v2 − v1| is larger than Eq. (2.34), the strong com-

pression causes two shock waves to propagate to both sides. A high-pressure

region is formed between the shock waves, and the pressure and the velocity in

this region are constant. Conditions similar to Eq. (2.51) hold for the velocity

jumps of the two shock waves, and we can obtain the pressure and the velocity

in the region between the two shock waves. This case is caused by a collision

of two gaseous objects.

The following are cases of the expansive velocity fields with v2 < v1.

(iv) When the expansive velocity jump |v1−v2| equals that of the rarefaction wave,

Eq. (2.50), the initial discontinuity becomes a continuous rarefaction wave and

propagates toward the high-pressure side.

(v) When the velocity jump |v1 − v2| is smaller than Eq. (2.50), a shock wave and

a rarefaction wave appear to propagate toward both sides as in case (ii) and

the case without the velocity jump. We can obtain v3 and p3, as in case (ii).

(vi) When the velocity jump |v1−v2| is larger than Eq. (2.50), the strong expansion

causes two rarefaction waves to propagate toward both sides. A low-pressure

region with constant p3 and v3 is formed between the two rarefaction waves,

and p3 and v3 can be obtained from conditions similar to Eq. (2.50) for the

velocity differences in each rarefaction wave.

Problem 15. Find the pressure distribution for the Riemann problem where only a

velocity jump exists initially. Consider both compressive and expansive cases, setting

v1 = −v2.

2.6 Transition to supersonic speed in a steady flow

• Consider a steady flow of an isentropic gas. Gravity is assumed to be ineffective.

Since Bernoulli’s equation (1.31) holds for an isentropic steady flow, the velocity

satisfies

v2 = 2(h0 − h) =
2γ

γ − 1

(
p0
ρ0

− p

ρ

)
=

2

γ − 1
(c2s,0 − c2s), (2.52)

where the thermodynamic quantities with the subscript 0 represent the values at

v = 0. This equation indicates that the gas accelerates as the pressure, density,

and sound velocity decrease. As the acceleration continues, the velocity eventually

exceeds the sound velocity, and the flow becomes a supersonic. The transition flow
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from subsonic to supersonic is called the transonic flow. The point where the Mach

number M = v/cs = 1 is called the critical point or the sonic point. The critical

velocity, cs,∗, is the sound velocity at this point, which is obtained as

cs,∗ =

√
2

γ + 1
cs,0. (2.53)

Using Eq. (2.52), each thermodynamic quantity is obtained as a function of the

velocity.(
cs
cs,0

)2

=

(
ρ

ρ0

)γ−1

= 1− γ − 1

2

(
v

cs,0

)2

= 1− γ − 1

γ + 1

(
v

cs,∗

)2

. (2.54)

• Mass flux density in the steady transonic flow

Using Eq. (2.54), the magnitude of the mass flux density, j = ρv, can be obtained

as a function of v (Figure 9, left), showing that j reaches its maximum value at the

critical point. This can be shown generally from the steady-state Euler’s equation v·
gradv = −(1/ρ)grad p. Since this equation gives dp/dv = −ρv along a streamline,

we obtain
dρ

dv
=

dp

dv
/

(
dp

dρ

)
s

= −ρv

c2s
. (2.55)

Thus, dj/dv is given by

dj

dv
= ρ+ v

dρ

dv
= ρ

[
1−

(
v

cs

)2
]
. (2.56)

This shows that j increases with v at subsonic speeds, and decreases at supersonic

speeds. Therefore, j reaches its maximum value j∗ = ρ∗cs,∗ at the critical point.

(The subscription ∗ indicates quantities at the critical point.)

• Flow in a de Laval nozzle

– To accelerate the gas to supersonic speeds, j must be varied as shown in the

left panel of Figure 9. Let us consider how this can be achieved.

– Consider a steady flow in a tube with a cross section S that varies in the

direction of the x-axis along the tube. Also, assume that the flow in the tube

is one-dimensional and only depends on x. For a steady flow in a tube, the

mass flux through each cross section of the tube is constant, i.e.,

S j = const. (2.57)

Thus, we obtain

1

S

dS

dx
= −1

j

dj

dx
=

[(
v

cs

)2

− 1

]
1

v

dv

dx
, (2.58)

where Eq. (2.56) is used in the second equality. This equation determines the

one-dimensional velocity field in the tube.
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– This equation shows that j and v are constant in a tube with a constant

cross section S. For a tube that tapers (dS/dx < 0), j increases and the

flow accelerates in the subsonic range but does not reach supersonic speeds.

Therefore, to create a flow exceeding the sound velocity, it is necessary to use a

tube with a minimum cross-section Smin in the middle of the tube, as shown in

the right panel of Figure 9. If the velocity becomes equal to the sound velocity

at S = Smin, j decreases beyond that point, making it possible to continue

accelerating even at supersonic speeds. A tube with this shape is called de

Laval nozzle.

– A supersonic gas ejection mechanism using de Laval nozzle is applied to the

rocket jet engine. The flow that exceeds the critical point in de Laval nozzles

is also useful for understanding the acceleration of stellar winds and other

supersonic flows in the universe.

Problem 16. From Eq. (2.58), we see that dv/dx is proportional to
√

d2S/dx2. Find the

proportional coefficient. (Hint) Use L’Hôpital’s rule for 0/0. Note also that cs depends

on x.

0 1 2
0

0.5

1

j / j*

v / cs,*

S
min

S

Figure 9: The j-v relation for the gas with γ = 1.4 (left) and a flow in de Laval nozzle

(right).
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3 Hydrodynamic Stability

3.1 Hydrostatic equilibrium

• Let us first describe the structure of a fluid at rest in a gravitational field. For a fluid

at rest (v = 0), Euler’s equation including the gravitational force can be written as

−1

ρ
grad p− gradϕ = 0, (3.1)

where ϕ is the gravitational potential, which is governed by Poisson’s equation

△ϕ = 4πGρ. (3.2)

Equation (3.1) is called the hydrostatic equation.

• In the case of a uniform gravitational field, the direction of the z-axis is usually

chosen to be opposite to the gravitational force. Then the gravitational force is

written as −gradϕ = −g ez, and the hydrostatic equation is given by

dp

dz
= −gρ. (3.3)

• A non-rotating hydrostatic body will have a spherical structure, and its density

distribution will be spherically symmetric. The gravitational force of such a body

is given by

−gradϕ = −GM(r)r

r3
, (3.4)

where M(r) is the mass contained in a sphere of the radius r given by

M(r) =

∫ r

0

4πρr2dr. (3.5)

Then the hydrostatic equation for a spherically symmetric self-gravitating body is

written as
dp

dr
= −GM(r)ρ

r2
. (3.6)

This equation is used to study the structure of a spherically symmetric star.

• We have assumed a perfectly static fluid above. However, the hydrostatic equation

is also valid if the convective motion is sufficiently slow compared to the sound

velocity.

• To solve the problem of the hydrostatic equilibrium, we also need the energy equa-

tion (or the adiabatic condition) together with the hydrostatic equation. The energy

equation generally describes the energy transfer due to the radiation and the con-

vective motion.
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• We studied the component of the hydrostatic equation parallel to the gravitational

force. The horizontal components perpendicular the gravitational force require the

pressure and the density to be constant on the gravitational equi-potential surface.

This also makes the equipotential surface coincide with the isothermal surface. This

is an important property of the hydrostatic equilibrium.

Problem 17. Derive the hydrostatic equation (3.4) for a spherically symmetric self-

gravitating body from Poisson’s equation (3.2).

z
p(z)

s(z)

p(z)

s(z)

z+ z
p(z+z)

s(z+z)
p(z+z)

s(z)

fluid particle environment

Figure 10: Thermodynamic states of an upwardly displaced particle and its environment

3.2 Stable condition against convection

• Mechanical equilibrium in which forces are balanced, such as hydrostatic equilibrium

or steady flows, is not necessarily stable. In general, it is stable only if certain

conditions are satisfied. Let us consider the conditions that determine whether an

equilibrium state is stable or not. When a hydrostatic equilibrium state is unstable,

flow occurs spontaneously, for example, convection occurs. In this section, we derive

the condition for the absence of convection.

• In a hydrostatic structure in a uniform gravitational field, the pressure p and en-

tropy s are given as functions of z from the hydrostatic equation and the energy

equation. Consider a fluid particle at height z with a specific volume V (p(z), s(z)).

Suppose that the fluid particle moves adiabatically upwards by a small interval δz.

The specific volume after the displacement is given by V (p(z + δz), s(z)) because

the displacement is adiabatic and the pressure quickly equilibrates with the sur-

roundings. If the upwardly displaced fluid particle has a higher density than the

surrounding fluid at height z+δz, an additional gravitational force due to the excess

density pushes it back to the original height z. In this case, convection does not
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occur and we can say that the hydrostatic equilibrium state is stable. Since a higher

density means a smaller specific volume, the condition for the absence of convection

is written as

V (p(z + δz), s(z + δz))− V (p(z + δz), s(z)) > 0. (3.7)

The first term on the left-hand side of the above inequality is the specific volume of

the surrounding fluid. Expanding this first term by the difference s(z+ δz)−s(z) =

(ds/dz)δz, the condition becomes(
∂V

∂s

)
p

ds

dz
> 0 (3.8)

We can also obtain the same condition for a negative displacement δz. The ther-

modynamic formula gives(
∂V

∂s

)
p

=
T

cp

(
∂V

∂T

)
p

=
γ − 1

γ

m

kB
V (3.9)

The second equality holds for ideal gases. For ideal gases, (∂V/∂s)p is always posi-

tive. Many other substances also expand when heated and have positive (∂V/∂T )p
and (∂V/∂s)p. Therefore, for most substances, the stable condition against convec-

tion becomes6
ds

dz
> 0. (3.10)

• The condition (3.10) can be expressed with the temperature gradient. Using Maxwell’s

relations and other thermodynamic formulas, the condition (3.10) is rewritten as

ds

dz
=

(
∂s

∂T

)
p

dT

dz
+

(
∂s

∂p

)
T

dp

dz
=

cp
T

dT

dz
−
(
∂V

∂T

)
p

dp

dz
(3.11)

Furthermore, using the hydrostatic equation (3.3), we obtain the stable condition

as
dT

dz
> − gT

cpV

(
∂V

∂T

)
p

(3.12)

This shows that a positive temperature gradient dT/dz always results in a sta-

ble hydrostatic structure. Even a negative temperature gradient results in a stable

structure if the absolute value of dT/dz is less than (gT/cpV )(∂V/∂T )p. This thresh-

old for |dT/dz| is called the adiabatic temperature gradient. For ideal gases, the

adiabatic temperature gradient is given by g/cp.

• Let’s also derive the restoring force against the vertical displacement of a fluid

particle mentioned above. The additional gravitational force due to a change in

density is the buoyancy. Using the density difference δρ with the surroundings, the

buoyancy per unit volume is given by

fb = −gδρ. (3.13)

6Note that water has a negative (∂V/∂T )p at T = 0− 4◦C.
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Furthermore, δρ is equal to 1/V (p(z + δz), s(z)) − 1/V (p(z + δz), s(z + δz)), and

transformations of δρ similar to Eqs. (3.8) and (3.9) yield

fb = − gT

cpV 2

(
∂V

∂T

)
p

ds

dz
δz (3.14)

This restoring force causes the fluid particles to oscillate. Its frequency is obtained

from Eq. (3.14) as

ω2 = − fb
ρδz

=
gT

cpV

(
∂V

∂T

)
p

ds

dz
(3.15)

This is called the Brandt-Vaisala frequency. In a stable hydrostatic equilibrium, the

waves oscillating due to this buoyancy are called internal gravity waves.

3.3 Instability of tangential discontinuities

• Consider an incompressible fluid with a tangential discontinuity. The tangential

discontinuity lies in the horizontal plane at z = 0 in a uniform gravitational field.

The fluid below the discontinuity is denoted by 1 and has a density of ρ1, and the

fluid above the discontinuity is denoted by 2 and has a density of ρ2. Due to the

discontinuity of the tangential velocity, fluid 2 “slides” on fluid 1.

Suppose that the fluid is in a state that slightly deviates from a hydrostatic equilib-

rium, i.e., a state in which small perturbations are added to the vertical hydrostatic

equilibrium. We derive the governing equations of the perturbations to study their

time evolution. If the perturbations grow infinitely, the equilibrium state is unstable,

and if they remain small, the equilibrium state is stable.

The pressure and velocity in a state where perturbations are added are written as

p = P + δp, vx = U + u, vz = w, (3.16)

where δp, u, and w are the perturbations. For simplicity, these perturbations are

assumed to be independent of y and the y-component of the velocity perturbation

is set to be zero. The unperturbed equilibrium state has an x-component of the

velocity, U . It is equal to a constant U1 for z < 0 and is a constant U2 for z > 0.

• Let us derive the equations for the perturbations. To do this, we substitute Eq. (3.16)

into the hydrodynamic equations, leaving only the first-order terms of the pertur-

bations. Generally, an analysis with the equations of the first-order terms of the

perturbations is called a linear stability analysis. From the equation of continuity

for incompressible fluids, div v = 0, we obtain

∂u

∂x
+

∂w

∂z
= 0 (3.17)

The x- and z-components of Euler’s equation yield

ρ

(
∂u

∂t
+ U

∂u

∂x
+ w

dU

dz

)
= −∂δp

∂x
, (3.18)
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ρ

(
∂w

∂t
+ U

∂w

∂x

)
= −∂δp

∂z
+ fb. (3.19)

The last term, dU/dz, on the left side of Eq. (3.18) is zero except for z = 0. In

Eq. (3.19), fb is the buoyancy. The expression for the buoyancy will be described

later.

In addition to the above equations, we need the equation describing the boundary

separating fluids 1 and 2 (i.e., the discontinuous surface), which originally lies at z

= 0. Since the location of the boundary z = ζ shifts due to the vertical motion of

the fluid particles near the boundary, the equation for ζ is give by

Dζ

Dt
≡ ∂ζ

∂t
+ U

∂ζ

∂x
= w(z = 0). (3.20)

The expression of the buoyancy is derived as follows. The buoyancy is given by

fb = −gδρ. Since incompressible fluids are considered, there are no density changes

inside fluids 1 and 2 and the buoyancy vanishes there. However, near the boundary,

a shift of the boundary can cause the density to change from ρ1 to ρ2 or vice versa,

and buoyancy appears. In the case of a positive ζ, the buoyancy is given by

fb =

{
−g(ρ1 − ρ2) (0 < z < ζ),

0 (otherwise),
(3.21)

and for a negative ζ,

fb =

{
−g(ρ2 − ρ1) (ζ < z < 0),

0 (otherwise).
(3.22)

The obtained buoyancy is not small but can be regarded as a perturbation because

it works only in a narrow region, as we will see later. Eqs. (3.17)-(3.22) determine

the linear perturbations around the tangential discontinuity.

• The above equations have a solution in which each perturbation depends exponen-

tially on t and x as

w(t, x, z) = w′(z) exp[i(kx− ωt)]. (3.23)

Other perturbations δp, u, and ζ are also written in the same form. In Eq. (3.23), the

wave number k is a positive real number, and the (angular) frequency ω is generally

a complex number7. If ω is a complex number and its imaginary part is positive,

then, the perturbation w increases exponentially with time and the unperturbed

state is unstable. Therefore, we can examine the stability, by checking whether ω is

such a complex number.

7Note that w′ is also complex. Exactly speaking, we should consider only the real part of the right-

hand side of Eq. (3.23). However, if we also include the imaginary part, we can simplify the subsequent

calculations.
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• Substituting the expression of Eq. (3.23) for each perturbation into Eqs. (3.17),

(3.18), and (3.20), and omitting exp[i(kx− ωt)] in all terms, we obtain

iku′ +
dw′

dz
= 0, (3.24)

−iρ(ω − kU)u′ + ρw′dU

dz
= −ik δp′, (3.25)

−i(ω − kU)ζ ′ = w′(z = 0). (3.26)

Equation (3.19) is treated differently near the boundary where the buoyancy works,

and the rest of the region. At |z| > |ζ ′|, the buoyancy vanishes (see Eqs [3.21] and

[3.22]) and we obtain

− iρ(ω − kU)w′ = −d δp′

dz
( z > |ζ ′| or z < |ζ ′| ). (3.27)

On the other hand, for the interval of −|ζ ′| < z < |ζ ′|, we integrate Eq. (3.19)

over this interval. Each term on the left side becomes a second-order term for

small perturbations due to the integration over the narrow interval 2|ζ| and can be

ignored. Integrating the right-hand side, we obtain

− [ δp′(z = |ζ ′|)− δp′(z = −|ζ ′|) ]− g(ρ1 − ρ2)ζ
′ = 0. (3.28)

This equation indicates that the buoyancy makes the pressure perturbation discon-

tinuous at the boundary. Equations (3.26) and (3.28) are the boundary conditions

for the perturbations at z ≃ 0.

• Solve Eqs. (3.24), (3.25), and (3.27) for the regions of the fluids 1 and 2. By

eliminating u′ from Eqs. (3.24) and (3.25) in each region and noting that dU/dz = 0

for z ̸= 0, we obtain

ρ (ω − kU)
dw′

dz
= −ik2 δp′. (3.29)

Using the z-derivative of this equation, we also eliminate δp in Eq. (3.27) and obtain

d2w′

dz2
− k2w′ = 0. (3.30)

Assuming that the perturbations are not divergent as z → ±∞, we obtain the

solution in each region as w′
1 = A1e

kz (z < 0),

w′
2 = A2e

−kz (z > 0),
(3.31)

where Ai = w′
i(z = 0). Generally, w′(z) is discontinuous at the boundary.

• We impose the boundary conditions at z = 0 in the solution. Using Eqs. (3.29)

and(3.31), Eq. (3.28) becomes

i [ρ2(ω − kU2)w
′
2(z = 0) + ρ1(ω − kU1)w

′
1(z = 0)]− kg(ρ1 − ρ2)ζ

′ = 0 (3.32)

36



and further eliminating w′
i using Eq. (3.26), we finally obtain

ρ2(ω − kU2)
2 + ρ1(ω − kU1)

2 − kg(ρ1 − ρ2) = 0. (3.33)

This gives the relation between the frequency ω and the wave number k and is called

the dispersion relation. The dispersion relation determines whether ω is complex or

not.

• Rayleigh-Taylor instability

We first consider the case of U1 = U2 = 0, where only the density is discontinuous

at the boundary. The instability of the density discontinuity is called the Rayleigh-

Taylor instability In this case the dispersion relation becomes

ω2 = kg
ρ1 − ρ2
ρ1 + ρ2

. (3.34)

When ρ2 > ρ1, the right-hand side of Eq. (3.34) becomes negative, and the fre-

quency ω becomes a purely imaginary number, such as ω = ±iα, where α =√
kg(ρ2 − ρ1)/(ρ1 + ρ2) is a positive real number. Since each perturbation is pro-

portional to exp(−iωt), a perturbation with a mode of ω = +iα grows exponentially

as exp(αt). Therefore, we find that the state where ρ2 > ρ1 is unstable (although it

was obvious). The growth rate α of this mode is proportional to k1/2. This means

that the mode with the shorter wavelength grows faster. Conversely, when ρ2 < ρ1,

since the frequency ω is real, the perturbation only oscillates and does not grow,

and this state is stable.

The waves that propagate this stable discontinuous surface are called the surface

gravity waves, and they propagate along the interface at a speed of ω/k. Although

we have considered the case of a constant gravitational field, the Rayleigh-Taylor

instability also occurs when the fluid undergoes accelerated motion (or decelerated)

and is subjected to the inertial force instead of the gravity. For example, when the

outer shell of a massive star blown away by its supernova explosion interacts with

interstellar gas and decelerates, the inertial force, which has the opposite direction

to the stellar gravity, results in the Rayleigh-Taylor instability.

• Kelvin-Helmholtz instability

We next consider the case with a non-zero velocity jump. This instability at the

discontinuity of the tangential velocity is called the Kelvin-Helmholtz instability.

Equation (3.33) is a quadratic equation for ω. The solution is

ω =
k

ρ1 + ρ2

[
ρ1U1 + ρ2U2 ±

√
g(ρ21 − ρ22)/k − ρ1ρ2(U1 − U2)2

]
. (3.35)

Therefore, for the wave number k greater than kmin defined by

kmin =
g(ρ21 − ρ22)

ρ1ρ2(U1 − U2)2
(3.36)
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the frequency ω is complex. Then the modes in which the imaginary part of ω

is positive grow exponentially. Since such modes always exist under realistic con-

ditions, it is concluded that the discontinuity of the tangential velocity is always

unstable.

3.4 Turbulence

(a) Onset of turbulence

The flow of a viscous fluid depends on the Reynolds number Re = UL/ν, where U

and L are the characteristic velocity and length of the flow, and ν is the kinematic

viscosity. When the Reynolds number is sufficiently small, the viscosity acts effectively,

the flow becomes steady, and the velocity changes smoothly with position. When the

Reynolds number exceeds a threshold value, the original steady flow becomes unstable,

and perturbations grow. If the Reynolds number is slightly above the threshold, the

viscosity regulates the instability, resulting in another steady flow or an unsteady but

regular flow with periodicity. On the other hand, as the Reynolds number increases,

the regular and periodic motion becomes a superposition of several modes of frequencies

and wavenumbers, resulting in a complex flow. When the Reynolds number becomes

sufficiently large, the flow becomes very complex and unpredictable. This type of flow is

called turbulence.

Turbulence can be thought of as the superposition of a huge number of eddies of differ-

ent sizes. Turbulence is characterized by its variability irregularity, and unpredictability.

For this reason, it is impossible and physically meaningless to describe turbulence accu-

rately at each position. However, due to the complexity and enormous number of degrees

of freedom, statistical methods are valid for describing turbulence. (This is the same as

thermo-statistical mechanics being valid for macroscopic objects.)

(b) Statistical properties of turbulence

Consider a homogeneous and isotropic turbulent flow. The velocity field of the flow is

divided into the mean velocity and the deviation from it. This deviation is the fluctuating

part of the velocity field and is characteristic of turbulence. The average amplitude of the

fluctuating part is denoted by ∆v. The fluctuating part is a superposition of components

of different wavelengths, and the largest wavelength in the components is denoted by L.

It can be said that the size of the largest eddies (or vortices) in the turbulent flow is L

and that the velocity of the largest eddies is ∆v. These two quantities characterize the

turbulence. The Reynolds number of turbulence given by Re = ∆vL/ν is enormous The

amplitudes of the pressure and density fluctuations are also determined by the largest

vortices and estimated as ∆p ∼ ρ(∆v)2 and ∆ρ ∼ ρ(∆v/cs)
2, respectively.

For smaller vortices, their velocity amplitudes decrease with their size l, and their

kinetic energy also decreases. On the other hand, the velocity gradient dv/dx ∼ vl/l

increases with decreasing size l. Turbulence consists of all vortices of different scales, and

the properties of these vortices can be understood by the concept of the turbulent cascade.
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• Turbulent cascade

The complex structure of turbulence is formed by a mechanism called the turbulent

cascade. The turbulent cascade consists of three stages.

The first stage is the excitation of the largest vortices by external action. Exter-

nal action is caused by various effects, such as gravity, magnetic fields, and collisions.

The nature of the largest vortices is determined by the external action. Let the en-

ergy injection rate per unit fluid mass into the largest vortices due to external action

be ϵ [J/kg/sec].

The second stage is the process of the vortex breakup, resulting in the creation

of smaller vortices. The decay time (lifetime) of a vortex is approximately its period

and estimated as l/vl.

The created small vortices eventually break up, generating even smaller vortices.

By repeating the creation and breakup, vortices have a wide size range, from the

largest vortices to small vortices. This phenomenon is called a turbulence cascade

because small vortices are created in a chain. Since the kinetic energy is transferred

from large vortices to smaller vortices in a turbulent cascade, it is also called an

energy cascade.

The third and final stage of the turbulent cascade is the viscous energy dissipa-

tion. Viscous energy dissipation is determined by the velocity gradient and occurs

primarily in the smallest vortices.

• Velocity distribution in a turbulent cascade

Consider the energy transfer in the turbulent cascade. As mentioned above, the

kinetic energy is first injected into the largest vortices at ϵ [J/kg/sec]. From them,

as the vortices break up sequentially, the kinetic energy is gradually transferred to

smaller vortices and finally dissipated due to viscosity in the smallest vortices.

The energy transfer rate [J/kg/sec] of each size range of vortices to the smaller size

is estimated by (the kinetic energy per unit mass at each size) / (the decay time),

that is

v2l /(l/vl) ∼ v3l /l. (3.37)

Since the energy transfer from large size to small proceeds steadily on average, the

energy transfer rate at each size to the smaller size is independent of the size and

equal to ϵ. Therefore, we obtain

ϵ ∼ v3l /l, or vl ∼ (ϵl)1/3. (3.38)

Since the former equation is written as ϵ ∼ (∆v)3/L for the largest vortices, the

velocity at each size is obtained as

vl ∼ ∆v(l/L)1/3. (3.39)

The frequency of each vortex is estimated as ω ∼ vl/l. Using this relation, we can

also write the vortex velocity as a function of the frequency ω. Since this relation

gives vω = vl ∼ (ϵvl/ω)
1/3, we obtain

vω ∼ (ϵ/ω)1/2. (3.40)
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• Size of the smallest vortices

For the smallest vortices, the energy transfer rate is equal to the energy dissipation

rate due to viscosity. The latter is estimated to be ν(vl/l)
28. Since both are equal at

the smallest size l0, its Reynolds number becomes Re(l0) = vl0l0/ν ∼ 1. Substituting

Eqs. (3.38) and (3.39) into this relation for Re(l0), we obtain the size and velocity

of the smallest vortices as

l0 ∼ (ν3/ϵ)1/4 ∼ Re(L)−3/4L, vl0 ∼ Re(L)−1/4∆v, (3.41)

where Re(L) = ∆vL/ν ≫ 1. The size range of l0 ≪ l ≪ L is called the iner-

tial range since there is almost no energy injection from the external or no energy

dissipation due to viscosity in this range.

• Energy distribution in a turbulent cascade

Find the energy distribution for size E(l). The vortex energy per unit mass for a

size l satisfies E(l)∆l ∼ E(l)l ∼ v2l , where the size width ∆l is set to be comparable

to l. Then, we obtain

E(l) ∼ (ϵ2/l)1/3 ∼ [(∆v)2/L] (l/L)−1/3 (3.42)

Also, the distribution E(k) for a wavenumber k(= 1/l) is obtained as

E(k) ∼ v2l /k ∼ ϵ2/3k−5/3 ∼ (∆v)2L (Lk)−5/3 (3.43)

The energy distribution E(ω) for the frequency ω is given by

E(ω) ∼ ϵ/ω2. (3.44)

Problem 18. Find the dimensions of the energy distribution functions, E(l), E(k),

and E(ω).

• Diffusion process in turbulence

In a turbulent flow, the rotational motion of the many vortices strongly enhances

the transport of momentum and energy. This transport is diffusive because the

turbulence is irregular. The strong diffusion in the turbulent flow can be thought of

as if the turbulent flow had a large viscosity νturb, which is called the eddy viscosity

or turbulent viscosity. Diffusion due to turbulent motion is mainly caused by the

largest vortices, and the turbulent viscosity is given by

νturb ∼ ∆vL. (3.45)

If we hypothetically consider a fluid with a viscosity of νturb, Re(L) would be unity,

and the viscous dissipation rate would be equal to the energy injection rate ϵ at

the largest vortices. This means that the energy dissipation occurs in the largest

vortices in the hypothetical fluid.

8The energy dissipation rate due to viscosity (per unit mass) is given by the work rate due to the

viscosity term ν △ v in the Navier-Stokes equations, which is estimated as v · (ν∆v) ∼ νv2l /l
2.
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4 Self-gravitating Fluids

4.1 Free fall

• In §3.1, we described the hydrostatic equation of a spherically symmetric self-

gravitating object. Here, we will consider the gravitational contraction of spherically

symmetric objects where the pressure is negligible, i.e., free fall contraction. Let

us examine how a fluid particle located at the position r0 at the initial time t = 0

falls toward the center. It is assumed that each part of the object is at rest initially.

Fluid particles are accelerated by the self-gravity of the object. The gravitational

field in a spherically symmetric object is given by Eq. (3.4) using M(r) of Eq. (3.5).

Since the surrounding fluid also falls with the fluid particle without passing, the

mass M(r) inside this particle is constant even at time t > 0 and equal to M(r0).

Therefore, the Lagrangian equation of motion of this fluid particle is given by

d2r

dt2
= −GM(r0)

r2
(4.1)

• Energy integral. Multiplying both sides of this equation by the velocity dr/dt and

integrating over time, we obtain

dr

dt
= −

√
2GM(r0)

(
1

r
− 1

r0

)
, (4.2)

where it is used that dr/dt is zero at the initial position r = r0 and negative for

t > 0 (or r < r0).

• The differential equation (4.2) can be readily integrated. In fact, with the variable

transformation of r/r0 = cos2 θ, Eq. (4.2) becomes

2 cos2 θ
dθ

dt
=

√
2GM(r0)

r30
. (4.3)

Noting that θ = 0 at t = 0, we can integrate this equation as

θ +
1

2
sin 2θ =

√
2GM(r0)

r30
t. (4.4)

This equation gives r as a function of time t, with the parameter θ.

• Using the above solution, the time tfall required for this fluid particle to fall to the

center is given by.

tfall =
π

2

√
r30

2GM(r0)
. (4.5)
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The time interval tfall is called the free fall time. The initial average density within

r0, ρ̄(r0), is defined by

ρ̄(r0) =
M(r0)

4πr30/3
. (4.6)

Using this, the free fall time tfall is rewritten as

tfall =

√
3π

32Gρ̄(r0)
. (4.7)

4.2 Jeans instability

• Consider a gas at rest with uniform density and pressure. Assume that self-gravity

does not work when the gas is uniform and isotropic9. That is, ρ0, p0, ϕ0= constant,

and v0 = 0.We examine this self-gravitational instability of a uniform gas using the

linear stability analysis described in the previous chapter. This problem is called

the Jeans instability.

• Write perturbations of each quantity as ρ1, p1, ϕ1, v1, and assume them adiabatic.

Since the unperturbed state is uniform, these perturbations have a coordinate and

time dependence of exp [ i(k · x− ωt) ].

• The first-order perturbation equation for each equation is obtained as

Equation of continuity − iωρ1 + iρ0 k · v1 = 0, (4.8)

Euler’s equation − iωv1 = −ik (c2s
ρ1
ρ0

+ ϕ1), (4.9)

Poisson’s equation − k2ϕ1 = 4πGρ1. (4.10)

Eliminating v1, ϕ1 from these equations, we obtain the dispersion relation as

ω2 = c2s k
2 − 4πGρ0. (4.11)

Therefore, we find that the perturbations with wavenumbers satisfying

k < kJ ≡
√
4πGρ0
cs

(4.12)

have a negative ω2 and grow exponentially, and as a result, the self-gravitational

contraction proceeds.

9This assumption of gravitational equilibrium in the unperturbed state is not correct. That is, the

gravitational equilibrium would not be reached without the pressure gradient and other effects that

balance with gravity. This flaw is referred to as “the Jeans swindle.” Nevertheless, the results of the

simple Jeans instability are useful for understanding self-gravitational instabilities in real systems that

are in equilibrium with other effects.
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• Properties of a gaseous cloud collapsing due to Jeans instability

– Jeans length

λJ ≡ 2π

kJ
=

√
πc2s
Gρ0

. (4.13)

– Collapsing time ≃ 1/(kJcs) = 1/
√
4πGρ0 (∼ free fall time.)

– Jeans mass

MJ ≃ 4π

3
ρ0

(
λJ

2

)3

∝ ρ
−1/2
0 . (4.14)

Problem 19. Derive Eqs. (4.8)-(4.11).

Problem 20. Find the Jeans length [pc], the Jeans mass [M⊙], and the collapsing time

[yr] for a molecular cloud with temperature of 10K and density of nH2 = 50 [cm−3].

4.3 Virial theorem

• Let us derive a relation called the virial theorem that holds for spherically symmet-

ric self-gravitating objects in hydrostatic equilibrium such as stars. As mentioned

in §3.1, to determine the hydrostatic structure of a self-gravitating object, in addi-

tion to the hydrostatic equation, we need the energy equation that determines the

temperature distribution. On the other hand, the virial theorem holds universally

regardless of the mode of energy transport.

• To derive the virial theorem, we start with the hydrostatic equation (3.6) for a spher-

ically symmetric self-gravitating object. Multiplying both sides of this equation by

r and integrating over the entire volume of the object, we obtain∫ R

0

dp

dr
r 4πr2dr = −

∫ R

0

GM(r)ρ

r2
r 4πr2dr, (4.15)

where R is the radius of the object’s surface where ρ = p = 0. With the integration

by parts, the left-hand side of this equation becomes∫ R

0

dp

dr
4πr3dr =

[
p 4πr3

]R
0
−3

∫ R

0

p 4πr2dr = −3

∫ R

0

(γ−1) ρe 4πr2dr = −3 (γ−1)U.

(4.16)

and can be expressed by the total internal energy U . In the second and third

equalities in the above equation, we assume the ideal gas with a constant specific

heat. On the other hand, the right-hand side of Eq. (4.15) is transformed as

−
∫ R

0

GM(r)ρ

r
4πr2dr = −

∫ M(R)

0

GM(r)

r
dM(r) (4.17)
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and equal to the total gravitational energy of the object. Then, we obtain the virial

theorem10．
3 (γ − 1)U +W = 0. (4.18)

Problem 21. Generally, the total gravitational energy of an object is given by

W ≡ −1

2

∫
V

∫
V

Gρ(x)ρ(x′)

|x− x′|
d3x d3x′ =

1

2

∫
V

ρ(x)ϕ(x) d3x. (4.19)

For a spherically symmetric object of radius R, show that this definition is equal

to the right-hand side of Eq. (4.17). (Hint) Integrate it by parts and use dϕ/dr =

GM(r)/r2.

• Using the virial theorem, the total energy U + W of a hydrostatic object is rewritten

as

U +W = (4− 3γ)U. (4.20)

Since U is positive, if γ > 4/3, the total energy is negative, and the object is bounded

by the self-gravity. Conversely, if γ < 4/3, the object is unbounded.

• Suppose an object bound by the self-gravity with γ > 4/3 emits radiation from

its surface. Then its total energy decreases, and the absolute value of the total

gravitational energy |W |, the total internal energy U , and the average temperature of

the star increase. In other words, self-gravitating objects have the peculiar property

that their average temperature increases when they release energy. Therefore, we

can say that self-gravitating objects have a negative heat capacity.

4.4 Hydrostatic structures of polytropic gas spheres

• We solve the hydrostatic equation for spherically symmetric gaseous objects under

simple assumptions. Differentiating the hydrostatic equation (3.6) multiplied by

r2/ρ, we have
d

dr

(
r2
1

ρ

dp

dr

)
= −4πGρ r2. (4.21)

Although we usually need the energy equation governing the temperature distribu-

tion T (r) to solve Eq. (4.21), we assume the polytropic relation

p = KρΓ , (K and Γ are constant) (4.22)

for simplicity. Note the exponent Γ is generally different from γ. The polytropic

index n = 1/(Γ −1) is often used instead of Γ . The hydrostatic sphere that satisfies

10Since the static object is considered here, we used Euler’s equation, setting ∂v/∂t+ v · ∇v = 0.

The virial theorem including these terms gives the more general relation, which is also valid for the

object with internal motion.
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this relation is called a polytropic gas sphere. For an ideal gas, the polytropic

relation gives T (r) ∝ ρ(r)1/n, and the larger n is, the closer to isothermal.

Problem 22. A real hydrostatic gaseous object is stable (or marginally stable)

against convection and satisfies ds/dr ≥ 0. From this, show that Γ ≤ γ　 for gas

spheres.

• Lane-Embden equation: Density and pressure are expressed with the dimension-

less parameter θ as

ρ = ρc θ
n, p = pc θ

n+1. (4.23)

These expressions satisfy the polytoropic relation with Γ = 1 + 1/n. Substituting

them into Eq. (4.21) yields the differential equation for θ[
(n+ 1)pc
4πGρ2c

]
1

r2
d

dr

(
r2
dθ

dr

)
= −θn. (4.24)

The inside of [ ] in the above equation has a dimension of length squared. Using

the length a defined by

a =

[
(n+ 1)pc
4πGρ2c

]1/2
, (4.25)

we introduce the dimensionless radial coordinate ξ normalized as

ξ = r/a. (4.26)

Equation (4.24) is expressed with ξ instead of r as

1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn. (4.27)

This is called the Lane-Embden equation and determines the hydrostatic struc-

ture of polytropic gas spheres.

• The variable θ satisfies the boundary conditions at ξ = 0

θ = 1,
dθ

dξ
= 0 (ξ = 0). (4.28)

The former is clear from Eq. (4.23). The latter is because the pressure gradient at

the center vanishes from Eq. (4.21). The solution to Eq. (4.27) that also satisfies

these boundary conditions is called the Lane-Embden function and denoted by

θn. Figure 11 shows the Lane-Embden function for some polytropic indices n. The

Lane-Embden function θn decreases monotonically from the center and vanishes at

the surface of the object. The radial coordinate of the surface is denoted by ξ1, and

the radius of the object R is given by ξ1a. The dimensionless radius ξ1 increases

with n and is divergent at n = 5. Table 1 lists the constants for the Lane-Emden

function, including ξ1.
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• The total mass of the object M(R) is given by

M(R)

4πa3ρc
=

∫ ξ1

0

θnξ2dξ = −
∫ ξ1

0

d

dξ

(
ξ2
dθ

dξ

)
dξ = −

(
ξ2
dθ

dξ

)
ξ=ξ1

. (4.29)

In the second equality, the Lane-Embden equation is used. The average density ρ̄

is given by
ρ̄

ρc
=

M(R)

4πR3ρc/3
= − 3

ξ1

(
dθ

dξ

)
ξ=ξ1

. (4.30)

Problem 23. For n = 0, 1, and 5, show that the Lane-Embden functions are given by

θ0 = 1− 1

6
ξ2, θ1 =

sin ξ

ξ
, θ5 =

(
1 +

ξ2

3

)−1/2

. (4.31)

Problem 24. Show that the total gravitational energy of a polytropic gas sphere with

n < 5 is given by

W =
1

2

∫
ρϕ dV = − 3

5− n

GM2

R
(n < 5の場合). (4.32)

To do so, firstly derive the relation

(n+ 1)
p

ρ
+ ϕ = −GM

R
(constant). (4.33)

Using this equation and the virial theorem W = −3
∫ R

0
pdV，derive Eq. (4.32). Further-

more, if pc and ρc are finite, show that the total mass of a polytropic gas sphere with

n = 5 is also finite, and derive the expression of W

W = −
√
3π

32

GM2

a
(for n = 5). (4.34)

If necessary, use the integral formula
∫∞
0

x2dx
(1+x2)3

= π/16. Comparing Eq. (4.32) with

(4.34), we find that ξ1 is approximately given by 32
√
3

π(5−n)
≒ 17.6

5−n
when n is sufficiently close

to 5.

Problem 25. For n = 3.4, 4.9, 4.99, solve numerically the Lane-Emden equation and

find the values of ξ1 and −ξ21(dθ/dξ)ξ=ξ1 to the 6th digit accurately. Also, briefly describe

the program you used.

Problem 26. The Lane-Emden function with n = 3 is used for a simple estimate of the

stellar structure. Using the solar mass (1.99×1030kg), the solar radius (6.96×105km), and

θ3, estimate the density and pressure at the center of the sun, and find the temperature

at the center, using the average molecular weight of 0.61. (In the standard solar model of

Bahcall et al. (1995), ρc = 160g/cm3, pc = 2.4×1016Pa, Tc = 1.6×107K.）Also, show that

the radiation pressure prad =
4σ
3c
T 4 is negligible inside the sun. (σ = 5.7× 10−8W/m2/K4,

c = 3.0× 108m/s.)
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Problem 27. The maximum mass of a white dwarf, “Chandrasekhar limit”.

After the end of hydrogen burning or helium burning, low- or intermediate-mass stars

complete their fusion and evolve into white dwarfs. The interior of a white dwarf is

extremely dense (about 107 g/cm3), and the structure is supported by the degeneracy

pressure of electrons generated by such high density. The degeneracy pressure of the

completely degenerate electrons is approximately given by the power of the density, as

in the polytropic relation. The polytropic exponent n is 1.5 at a relatively low density

and gradually increases with the density, reaching 3 in the high-density limit. In this

high-density limit, the coefficient K of the polytropic relation is given by11

K =
1

8

(
3

π

)1/3
hc

(muµe)4/3
, (4.35)

where h is the Planck constant, c is the speed of light, mu is the atomic mass unit, and

µe is the number of nucleons per electron.

• For polytropes where the coefficient K is independent of the central density ρc,

express the total mass M as a function of ρc and K, and show that the total mass

does not depend on the central density when n = 3.

• As the mass of the white dwarf increases, the central density and central pressure

increase to support the structure. Using the above result, show that the maximum

mass that can be supported by the electron degeneracy pressure is given by

Mmax =

√
3

2

2.0182

4π (muµe)2

(
hc

G

)3/2

. (4.36)

Also, find the value of Mmax for µe = 2.0, and explain why µe = 2.

0 1 2 3 4 5 6 7
0

0.5

1

θ

ξ

n  = 5

3

1.5
10

Table I: Constants for the Lane-Emden function

n 1 -1
2(d/d )=1 c / 

0 6 = 2.45 2 6 = 4.90 1

1  = 3.14  = 3.14 2/3 = 3.29

1.5 3.6538 2.7141 5.9907

3 6.8968 2.0182 54.182

5 ∞ 3 = 1.73  ∞

Figure 11: Lane-Emden functions.　　　　　　　　　　　　　　　　　　　
11The Fermi momentum pF of electrons with the number density ne is given by pF ∼ hn

1/3
e . In the

high-density limit (i.e., in the ultrarelativistic limit), the Fermi energy is ϵF = cpF , and the electron

degeneracy pressure is obtained by differentiating ϵF by the volume per electron, 1/ne. Therefore, we

obtain the pressure as p ∼ hcn
4/3
e , and using ne = ρ/(muµe) the coefficient K is estimated to be

∼ hc/(muµe)
4/3.
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This upper limit on the mass of a white dwarf is called the Chandrasekhar limit.

A white dwarf whose mass exceeds the Chandrasekhar limit due to gas accretion can

no longer maintain its hydrostatic structure and shrinks rapidly, followed by a Type Ia

supernova explosion.

(ASIDE) Hydrostatic structure of neutron stars

Neutron stars are the densest objects except for black holes and are fomed by super-

novae. The central density of a neutron star with a solar mass is about 1015g/cm3 (about

the same as the internal density of nuclei), and its radius is about 10 km. Because such

dense neutron stars have extremely strong self-gravity, it is necessary to use general rel-

ativity rather than Newtonian mechanics to investigate their hydrostatic structure. The

hydrostatic equation for a spherically symmetric object derived from the general theory

of relativity is called the TOV equation (Tolman-Oppenheimer-Volkoff equation)

and is given by12

dp

dr
= −G (M(r) + 4πr3p/c2) (ρ+ p/c2)

r (r − 2GM(r)/c2)
. (4.37)

Using the TOV equation with the equation of state p = p(ρ), we can derive the upper

mass limit of neutron stars. Since the relativistic effects enhance gravity, the upper mass

limit of neutron stars obtained from the TOV equation is much smaller than the limit of

several solar masses obtained from Eq. (4.36) based on Newtonian mechanics.

12See §8.5 for the derivation. We can see the effects of the general relativity by comparing Eq. (3.6) with

the Newtonian hydrostatic equation (3.6). All the relativistic effects on the right-hand side in Eq. (3.6)

work to enhance gravity.
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5 Spherically Symmetric Flow

5.1 Stellar wind

Stellar wind or solar wind is the supersonic outflow of gas from the surface of a star. The

stellar wind is an example of spherically symmetric compressible steady flow, and the

transition to supersonic velocity described in §2.6 is applicable.

(a) Hydrostatic model of the stellar atmosphere

• Before considering the flow of the stellar wind, we examine the hydrostatic structure

of a stellar atmosphere is described. Assuming a corona, we consider an isothermal

atmosphere. It is convenient to use the isothermal sound velocity c2s = kBT/m in an

isothermal atmosphere. The solar corona has a high temperature of over 1 million

K and a sound velocity of over 100 km/sec.

• Substituting ρ = p/c2s into the hydrostatic equation and integrating it, we have

c2s ln

(
p

p0

)
= GMstar

(
1

r
− 1

R

)
. (5.1)

where cs = (kBT/m)1/2 is the isothermal sound velocity, p0 is the pressure at the

stellar surface, and R is the stellar radius. This equation gives the pressure at

infinity, p(∞), as
p(∞)

p0
= exp

(
−GMstar

c2sR

)
. (5.2)

• Using Eq. (5.2) and the temperature of the solar corona, we find that p(∞) is several

orders of magnitude lower than p0. However, the pressure in the interstellar medium

near the Sun is still many orders of magnitude lower than this estimate of p(∞).

Therefore, the solution of a hydrostatic stellar atmosphere is unrealistic. Instead,

there is an outflow from the upper atmosphere to the outside, i.e., a stellar wind

occurs.

(b) Parker’s stellar wind solution

• Let us consider the steady stellar wind. Although a steady compressible flow is de-

scribed by Bernoulli’s equation, we start with Euler’s equations, as in §2.6. Assume

a spherically symmetric steady flow where v = (v(r), 0, 0) and v is the r component

of the velocity. The r component of Euler’s equation including gravity is given by

v
dv

dr
= −c2s

ρ

dρ

dr
− GMstar

r2
. (5.3)

On the other hand, the equation of continuity shows that the mass flux Sρv of a

spherically symmetric steady flow is constant. Since S = 4πr2 in this case, we have
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Figure 12: The left and middle panels display the velocity and density of Parker’s isother-

mal solution, respectively. The right shows schematics of the stellar wind (top) and the

accretion flow (bottom).

4πr2ρv = Ṁout (const.), (5.4)

where Ṁout is the mass loss rate due to the outflow. Differentiating this by r yields

1

ρ

dρ

dr
= −1

v

dv

dr
− 2

r
. (5.5)

• Substituting Eq. (5.5) into (5.3), we obtain the stellar wind equation as(
v2

c2s
− 1

)
1

v

dv

dr
=

2

r
− GMstar

c2s r
2

. (5.6)

This equation is similar to the equation (2.58) for the flow through a de Laval nozzle.

The right-hand side is negative at small radius r and positive at large r (as is dS/dx

of a de Laval nozzle). The critical radius r∗ at which the right-hand side vanishes

is given by

r∗ =
GMstar

2c2s
. (5.7)

Therefore, the outflow velocity of the stellar wind is subsonic inside r∗ and supersonic

outside r∗. In the case of an isothermal flow, Eq. (5.6) can be easily integrated as

1

2

v2

c2s
− ln

(
v

cs

)
= 2 ln

(
r

r∗

)
+ 2

r∗
r
− 3

2
, (5.8)

where the constant of integration, −3/2, is chosen so that v = cs at r∗. This

solution can also be obtained from Bernoulli’s equation. This steady solution of

the isothermal stellar wind is called Parker’s solution. Figure 12 shows Parker’s

solution.
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• Assuming that the temperature in the solar corona is constant at 1.5 million K, the

critical radius r∗ of the solar wind is estimated from Eq. (5.7) to be about five times

the solar radius. Also, from Eq. (5.6), in the isothermal case, the velocity gradient

at the critical radius is obtained as dv/dr = ±cs/r∗. The sign on the right-hand

side is positive for stellar winds.

• Acceleration mechanism of stellar wind

– We first check the physical meanings of each term in Eq. (5.6) to understand

the acceleration mechanism. Equation (5.6) originates from Euler’s equation.

The first term in parentheses on the left side is originally (v · grad)v, which is

the acceleration term in a steady flow. The second term on the left side and

the first on the right side come from the pressure gradient term. The second

term on the right side is the gravity term.

– Outside the critical radius r∗, we see that the first terms on each side are larger

than the others and balance each other. Therefore, from their meanings, we

find that the acceleration is caused by the pressure gradient.

– Inside the critical radius r∗, the second terms on each side balance. The two

balancing terms are the pressure gradient and the gravity. That is, the gas

is close to the hydrostatic equilibrium. Therefore, the acceleration here is not

determined by the pressure gradient13. To keep the mass flux (5.4) constant,

the velocity should increase as the density decreases rapidly in the downstream

direction. The constant mass flux is driven by the pressure gradient near and

outside the critical radius.

Problem 28. When the polytropic relation holds outside the critical radius, show that

the velocity of the stellar wind sufficiently far away from r∗ (i.e., the terminal velocity) is

given by

v(∞) =

√
5− 3Γ

Γ − 1
cs,∗ =

√
5− 3Γ

Γ − 1

GMstar

2r∗
. (5.9)

5.2 Accretion

• Another example of a spherically symmetric steady flow is a flow of interstellar gas

towards a gravitational source such as a star. (see the lower right panel of Figure 12).

The gravitational source is at rest in the surrounding gas. This flow is called the

accretion. Although the radial velocity of the accretion is negative, Eqs. (5.3)-(5.6)

apply similarly to stellar winds. Therefore, the accretion flow also has the critical

radius r∗ of Eq. (5.7), where |v| = cs. Since the outside is upstream in the accretion

flow, the flow is subsonic outside the critical radius and supersonic inside it.

13The acceleration inside r∗ is directly caused by the pressure gradient slightly exceeding gravity.

Nevertheless, this small imbalance between the pressure gradient and gravity is determined so that the

mass flux remains constant and is considered as the secondary factor.
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• The quantities at r∗ are estimated using Bernoulli’s equation (5.10). In this section,

we assume that the polytropic relation holds in the accretion flow. Then Bernoulli’s

equation is written as14

1

2
v2 +

c 2s
Γ − 1

− GMstar

r
=

c 2s,0
Γ − 1

, (5.10)

where we used c2s = Γp/ρ, and cs,0 is the sound velocity far enough away from

the gravitational source object. Writing the left-hand side of this equation with

quantities at r∗, we have

cs,∗ =

√
2

5− 3Γ
cs,0. (5.11)

Note that even monoatomic gas satisfies Γ < 5/3 and has finite cs,∗ when the

radiative cooling of the gas is effective. The critical radius r∗ and the density there

ρ∗ are given by

r∗ =
5− 3Γ

2

GMstar

2c 2s,0
,

ρ∗
ρ0

=

(
cs,∗
cs,0

) 2
Γ−1

=

(
2

5− 3Γ

) 1
Γ−1

. (5.12)

where ρ0 is the gas density far away.

• The mass accretion rate Ṁin onto the object is defined by

Ṁin = −4πr2ρv, (5.13)

and independent of r. Expressing this with quantities at r∗ and using the above

equation, we obtain the mass accretion rate as

Ṁin = 4πr2∗ρ∗cs,∗ = 4π

(
2

5− 3Γ

) 5−3Γ
2(Γ−1)

(
GMstar

2c 2s,0

)2

ρ0 cs,0 (5.14)

The above solution and the mass accretion rate are called the Bondi solution

and the Bondi accretion rate, respectively. Using the Bondi radius rB defined by

2GMstar/c
2
s,0, the Bondi accretion rate is often simply estimated as 4πr2Bρ0 cs,0, ne-

glecting its Γ dependence.

Problem 29. Explain the acceleration mechanism of the accretion flow inside and

outside r∗ based on Eq. (5.6) as in the case of the stellar wind15.

14In Chapter 1, we derived Bernoulli’s equation for the adiabatic flow. Equation (5.10) is valid even

when the polytropic relation holds instead of the adiabatic condition. Noting that c2s = Γp/ρ and

differentiating Eq. (5.10) by r, we obtain Euler’s equation (5.3).
15The supersonic jet formed in the de Laval nozzle can be explained in the same way as these flows.
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5.3 Blast waves

(a) Model of a blast wave

We examine a blast wave generated by a point source explosion and its propagation in

the uniform gaseous medium. The blast wave is the flow of the gaseous medium blown

out by the explosion. Due to the following assumptions, the gas flow is determined only

by the explosion energy E and the density of the surrounding medium ρ0. The flow is

spherically symmetric for the point source.

• The point source explosion is assumed. The mass, momentum, and initial volume

of the gas released by the explosion are all negligibly small. The explosion duration

is sufficiently short.

• The initial pressure, sound velocity, and internal energy of the surrounding medium

can be ignored due to the strong explosion.

• Cooling due to radiation and gravity can be ignored.

An analytical solution has been obtained for the ideal blast wave, known as Sedov’s

solution16.

(b) Dimensional analysis of blast waves

By dimensional analysis, we can derive the following scaling laws for Sedov’s solution

without solving the hydrodynamical equations.

• In this problem, there exists only a dimensionless quantity
r5ρ0
t2E

. Using it, each

dimensional quantity is uniquely estimated.

• Time evolution of a blast wave

– Shock front radius of a blast wave ∼
(
E

ρ0

)1/5

t2/5

– Propagation speed, flow velocity ∼
(
E

ρ0

)1/5

t−3/5

– Density ∼ ρ0, Pressure ∼ ρ0

(
E

ρ0

)2/5

t−6/5 (≫ p0 = ρ0c
2
s,0/γ).

• Structure of a blast wave

– The front of a blast wave is a spherical shock wave with a Mach number ≫ 1.

Outside the shock wave, the gaseous medium is still at rest and uniform.

16This analytical solution was published by Sedov in 1946. The numerical solution was reported earlier

by Taylor.
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– Inside the shock wave, the spatial distributions of the velocity, density, and

pressure depend only on a dimensionless coordinate given by

ξ =
( ρ0
E t2

)1/5
r. (5.15)

Therefore, the spatial distributions are similar at all times. Such a solution is

called a similarity solution17.

– The position of the shock wave is written with the dimensionless coordinate as

ξ = ξs (constant) and with the dimensionless coordinate and expressed with

the r-coordinate as

r = rs(t) ≡ ξs

(
E t2

ρ0

)1/5

. (5.16)

Propagation speed of the shock wave is

vs =
d

dt
rs(t) =

2rs(t)

5t
=

2ξs
5

(
E

ρ0 t3

)1/5

. (5.17)

The constant ξs is found by solving the hydrodynamic equations.

• Applicable range of Sedov’s solution.

– The ignorance of the mass M of the gas released from the explosion requires

the condition18

M ≪ 4π

3
rs(t)

3ρ0. (5.18)

– To ignore the pressure of the surrounding medium, the condition

p0 ≪ ρ0

(
E

ρ0 t3

)2/5

, or cs,0 ≪
(

E

ρ0 t3

)1/5

. (5.19)

is required.

These conditions give the lower and upper limits for the time t and rs that bound

the applicable range of Sedov’s solution.

Problem 30. A supernova explodes, ejecting 10 solar masses of material with an energy

of 1044J, forming a blast wave. The surrounding interstellar gas is an atomic hydrogen

gas with a number density of 1cm−3 and a temperature of 100K. In this case, estimate

both lower and upper limits in radius rs [pc] and time t [years] for the applicable range

of Sedov’s solution using Eqs. (5.18) and (5.19).

17The rarefaction wave in §2.2 is also a similarity solution. Its dimensionless coordinate is x/(cs,0t).
18The opposite limit of Eq. (5.18) corresponds to the initial free expansion phase, where the mass of the

surrounding medium is negligible. At this phase, the released gas expands freely at a constant velocity.
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(c) Derivation of Sedov’s solution

• Dimensionless variables in the similarity solution v′(ξ), ρ′(ξ), p′(ξ).

The relations between the variables v, ρ, p, and the dimensionless variables are given

by

v(r, t) =
2r

5t
v′(ξ), ρ(r, t) = ρ0 ρ

′(ξ), p(r, t) = ρ0

(
2r

5t

)2

p′(ξ), (5.20)

respectively. The time derivative and the r derivative for the dimensionless variables

are expressed by the ξ derivative as

∂

∂t
ρ′(ξ) =

∂ξ

∂t

dρ′

dξ
= −2ξ

5t

dρ′

dξ
,

∂

∂r
ρ′(ξ) =

∂ξ

∂r

dρ′

dξ
=

ξ

r

dρ′

dξ
(5.21)

• In the spherically symmetric case, the equation of continuity and the adiabatic

condition are written as

∂ρ

∂t
+

1

r2
∂

∂r
(r2ρv) = 0,

(
∂

∂t
+ v

∂

∂r

)
p

ργ
= 0, (5.22)

where we used p/ργ = Aes/cV (Eq. [1.65]). Substituting Eq. (5.20) into these equa-

tions and using Eq. (5.21), we obtain ordinary differential equations

dv′

d ln ξ
+ (v′ − 1)

d ln ρ′

d ln ξ
+ 3v′ = 0, (v′ − 1)

d ln(p′/ρ′γ)

d ln ξ
+ 2v′ − 5 = 0. (5.23)

The sum of these two equations can easily be integrated, and we obtain the so-called

adiabatic integral as19.

d

d ln ξ
ln
[
ξ5(v′ − 1) p′ρ′1−γ

]
= 0, and ξ5(v′ − 1) p′ρ′1−γ = const. (5.24)

• Energy integral

Using the equation of energy conservation instead of Euler’s equation, we will obtain

another integral.

– The total energy within the radius r is given by

E(r) =

∫ r

0

ε 4πr2dr, (5.25)

where ε ≡ ρ(1
2
v2+ e) is the energy per volume, and e is the internal energy per

unit mass. Reminding the energy conservation and the adiabatic condition and

neglecting the initial internal energy of the medium, we find that E(rs(t)) = E

(the explosion energy).

19The constant of the second equation of (5.24) is determined by the boundary conditions at r = rs.
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– Due to the similarity of the blast wave, E(r) has the following property. The

radius, r(ξ), for a given ξ increases with time as

r(ξ) = ξ

(
Et2

ρ0

)1/5

. (5.26)

The energy ratio E(r(ξ))/E defined by the radius r(ξ) constant for time due

to the similarity. That is, for a given ξ

d

dt
E(r(ξ)) = 0. (5.27)

– Taking the time derivative of Eq. (5.25), we obtain

d

dt
E(r(ξ)) =

∫ r(ξ)

0

∂ε

∂t
4πr2dr + ε 4πr(ξ)2

dr(ξ)

dt
. (5.28)

Using the equation of energy conservation (1.37), the first term on the right-

hand side of the above equation is rewritten as

−
∫ r(ξ)

0

1

r2
d

dr

[
r2ρv

(
1

2
v2 + h

)]
4πr2dr = −ρv

(
1

2
v2 + h

)
4πr(ξ)2. (5.29)

Furthermore, the second term is transformed by dr(ξ)/dt = 2r(ξ)/(5t) and

since the sum of the terms vanishes, we obtain

4πr2ρv

(
1

2
v2 + h

)
= 4πr2

2r

5t
ρ

(
1

2
v2 + e

)
. (5.30)

This equation is obvious. The left-hand side of this equation represents the

energy flowing out of the radius r(ξ) per unit time (the energy flux at r(ξ))

and the right-hand side represents the energy of the fluid entering the interior

of r(ξ) per unit time due to the increase in r(ξ). These energies should be

equal due to the invariance of E(r(ξ)).

– Noting that e = 1
γ−1

p/ρ, h = γ
γ−1

p/ρ for ideal gas, Eq. (5.30) is rewritten as

p

ρ
= −γ − 1

2
v2

v − 2r
5t

γv − 2r
5t

or
p′

ρ′
= −γ − 1

2
v′2

v′ − 1

γv′ − 1
. (5.31)

• Boundary conditions at the shock wave: The quantities (v1, ρ1, p1) behind

the shock are obtained from the Rankine–Hugoniot jump conditions for a strong

shock (p1/p0 ≫ 1).

– The density is obtained from Eq. (2.38) as

ρ1 =
γ + 1

γ − 1
ρ0. (5.32)
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– Denoting the velocities in the rest frame of the shock in front of and behind

the shock by u0, u1 (< 0), respectively, and noting that vs = |u0|, we have

v1 = u1 − u0 =

(
1− |u1|

|u0|

)
vs =

(
1− ρ0

ρ1

)
vs =

2

γ + 1
vs. (5.33)

– From Eq. (2.43) for a strong shock, we have

u2
0 =

γ + 1

2γ

p1
p0

c2s,0 =
γ + 1

2

p1
ρ0

, (5.34)

and the pressure behind the shock is given by

p1 =
2

γ + 1
ρ0 v

2
s . (5.35)

From Eqs. (5.32)-(5.35), the dimensionless variables at ξ = ξs become

v′(ξs) =
2

γ + 1
, ρ′(ξs) =

γ + 1

γ − 1
, p′(ξs) =

2

γ + 1
. (5.36)

• Using the above integrals and the boundary conditions, we can obtain the exact

solution. From the integrals of Eqs. (5.24) and (5.31), we have

ξ5
v′2 (v′ − 1)2

γv′ − 1
ρ′ 2−γ = const. (5.37)

With this, the first equation of (5.23) can be transformed into the first-order differ-

ential equation for v′

− 1

(3γ − 1)v′ − 5

(
γ + 1 +

γ − 1

γv′ − 1
− 2

v′

)
dv′

d ln ξ
= 1. (5.38)

Furthermore, by the partial fraction decomposition, we obtain(
a

v′ − 5/(3γ − 1)
+

b

v′ − 1/γ
− 2

5v′

)
dv′

d ln ξ
= 1, (5.39)

where the coefficients a and b are given by

a = − 13γ2 − 7γ + 12

5(3γ − 1)(2γ + 1)
, b =

γ − 1

2γ + 1
, (5.40)

respectively. Equation (5.39) can be easily integrated, finally yielding the solution

for v′ as [
5− (3γ − 1)v′

(7− γ)/(γ + 1)

]a [
γv′ − 1

(γ − 1)/(γ + 1)

]b [
γ + 1

2
v′
]−2/5

=
ξ

ξs
, (5.41)
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Figure 13: Sedov’s solution for γ = 5/3 and 1.4. In these cases, the density ratios ρ1/ρ0
are 4 and 6, respectively, and the gas blown away by the blast wave is concentrated near

the shock wave.

where the coefficients of each factor are determined such that the boundary condition

v′ = 2/(γ + 1) holds for ξ = ξs.

• Substituting Eq. (5.41) into (5.37) yields the density ρ′ as the function of v′

ρ′ =
γ + 1

γ − 1

[
5− (3γ − 1)v′

(7− γ)/(γ + 1)

]a′ [
γv′ − 1

(γ − 1)/(γ + 1)

]b′ [
1− v′

(γ − 1)/(γ + 1)

]c′
, (5.42)

where the coefficients are again determined by the boundary condition, and the

indices a′, b′, c′ are given by

a′ =
13γ2 − 7γ + 12

(3γ − 1)(2γ + 1)(2− γ)
, b′ =

3

2γ + 1
, c′ = − 2

2− γ
. (5.43)

Substituting this expression for ρ′ into Eq. (5.31), we can also obtain the expression

for p′. Figure 13 shows Sedov’s solutions for γ = 5/3 and 1.4.

• The constant, ξs, is determined by the equation E(rs) = E. Writing down Eq. (5.25)

at r = rs with dimensionless variables and introducing a new variable χ = ξ/ξs, we

obtain

ξ5s
16π

25

∫ 1

0

(
1

2
ρ′v′2 +

p′

γ − 1

)
χ4dχ = 1. (5.44)

By numerically integrating this using the obtained exact solutions, we can obtain

ξs. For example, ξs = 1.1517 and 1.0328 for γ = 5/3 and 1.4, respectively.
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Problem 31. Sedov’s solution near the center: Show that v′ is close to 1/γ at ξ ≪ ξs.

Also, show that the velocity, density, pressure, and temperature each have the following

r dependence near the center. (Use γ < 7.)

v ∝ r, ρ ∝ r 3/(γ−1), p = const., T ∝ r−3/(γ−1). (5.45)

Problem 32. Derive Eq. (5.44).

(ASIDE) Adiabatic integral

Let us see that the integral (5.24) comes from the entropy conservation. Similar to

the cumulative energy distribution E(r(ξ)), we define the cumulative distribution of the

entropy-related quantity p/ργ (∝ es/cV ) as20

Y (r(ξ)) = ργ−1
0

∫ rs(t)

r(ξ)

ρ
p

ργ
4πr2dr. (5.46)

Since it has a dimension of energy, this integral is also independent of t due to the similarity

as well as E(r(ξ)). Furthermore, Eq. (5.22) yields the equation equivalent to the enthalpy

conservation
∂

∂t

(
p

ργ
ρ

)
+

1

r2
∂

∂r

(
r2

p

ργ
ρv

)
= 0. (5.47)

Substituting this into the expression for the time derivative dY (r(ξ))/d ln t, we obtain for

a given ξ (≤ ξs)
21[

4πr2ρ

(
2r

5t
− v

)
p

ργ
t

]rs(t)
r(ξ)

= 0, and 4πr2ρ

(
2r

5t
− v

)
p

ργ
t = const. (5.48)

Writing down this integral with dimensionless variables yields Eq. (5.24)22.

(d) Blast waves considering the cooling process

Although Sedov’s solution neglects the cooling process, radiative cooling is effective in

the later phase of a blast wave generated by a supernova explosion. Due to the cooling,

Sedov’s solution breaks down much earlier (∼ 104 years)23 than the estimate in Problem

30. We describe the two subsequent phases of the blast wave when cooling is effective24.
20Since the integrand diverges at the center, we take the integration range that does not include r = 0.
21From its derivation, the second equation of Eq. (5.48) indicates the independence of r. However, the

left-hand side with the dimension of Eρ1−γ
0 is also independent of t as shown by the dimension analysis.

22Using Eqs. (5.20) and (5.21), we can obtain Eq. (5.24) directly from the conservation equation (5.47)

as in the derivation of Eq. (5.23).
23At this phase, the gas temperature is still several millions Kelvin and the gas is a fully ionized

plasma. Such a hot fully ionized plasma cools down by line radiation of X rays, and the cooling rate

is approximately given by Λ = 1 × 10−23(nH/10
6m−3)2(T/106K)−0.7 [J/m3/s] (see Fig. 1 of Gaetz &

Salpeter 1983). The cooling time tcool is estimated by the internal energy per unit mass of ionized gas,

3kTρ/mH, divided by the cooling rate Λ. Then, from the equation of t = tcool, the time at which the

cooling becomes effective is obtained as t = 3× 104(E/1044J)0.22(nH/10
6m−3)−0.55 years.

24The evolution of a supernova remnant is more complex due to non-uniform densities of the surround-

ing interstellar medium.
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• Pressure-driven snowplow phase

Radiative cooling is effective only in the high-density spherical shell near the shock

wave. On the other hand, the inner low-density gas is not cooled and keeps high tem-

perature and pressure. The cooled, dense spherical shell continues to expand, while

being pushed by the high pressure inside. This is the pressure-driven snowplow

phase.

Let us estimate the expansion rate of the spherical shell at this phase with dimen-

sional analysis. The inner gas expands adiabatically and satisfies pV γ = constant25.

Since V ∝ r3s , the inner pressure decreases as p ∝ r−3γ
s . Also, the inner pressure is

approximately equal to that of the post-shock, ρ0v
2
s (see Eq. [5.35]). Since vs ∼ rs/t,

we therefore find that the shell expands in the pressure-driven snowplow phase as

rs ∝ t2/(3γ+2), vs ∝ t−3γ/(3γ+2), p ∝ t−6γ/(3γ+2). (5.49)

Since γ > 1, the expansion in this phase is slower and the pressure decreases faster

than those of Sedov’s solution.

• Momentum conserving snowplow phase

When the adiabatic expansion reduces the pressure sufficiently, the spherical shell

is no longer pushed by the inside, and then the shell expands while conserving its

momentum. This is the momentum conserving snowplow phase.

The conserved momentum of a small part of the shell within a solid angle ∆Ω is

given by ∆Mvs, where ∆M is the shell mass within ∆Ω and increases as ∆M ∝ r3s .

Thus, the expansion velocity vs decreases as r−3
s . Noting vs ∼ rs/t again, we find

the shell expands in the momentum conserving snowplow phase as

rs ∝ t1/4, vs ∝ t−3/4. (5.50)

Since γ < 2 usually, the expansion in this phase is slower than that in the pressure-

driven snowplow phase. The expansion stops when the expansion velocity equals

the sound velocity of the outer medium.

25Since the cooled shell is thin, the shock front radius rs and the inner radius of the shell are almost

equal.
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6 Fundamentals of Magnetohydrodynamics

6.1 Basic equations of magnetohydrodynamics

(a) Electrically conducting fluids

• In space, we often deal with ionized gas (plasma). For example, the stellar interior

and the HII region are highly ionized plasmas. The HI regions and molecular clouds

with a low degree of ionization are called weakly ionized plasmas, Even the low de-

gree of ionization cannot be ignored in many cases. Magnetohydrodynamics (MHD)

is study describing the motion of plasmas. Since they have conductivity, the ion-

ized fluids interact with the electromagnetic field. Thus, it is necessary to solve the

hydrodynamics equations coupled with Maxwell’s equations. Since we consider the

macroscopic fluid, the mean free path of charged and neutral particles is assumed

to be much smaller than the characteristic length of the fluid.

• Maxwell’s equations (in SI units)

∇·D = ρe, (6.1)

∇·B = 0, (6.2)

∇×E +
∂B

∂t
= 0 (Faraday’s law of induction), (6.3)

∇×H − ∂D

∂t
= je (the Ampère-Maxwell law). (6.4)

To convert the above equations to those in the often-used cgs-gauss units, we express

D and H with E and B, respectively, and perform the conversions, B → B/c,

ε0 → 1/(4π), and µ0 → 4π/c2, This conversion formula from the SI to cgs-gauss is

valid not only for Maxwell’s equations but also for all equations in this section26.

• Assumptions in MHD

1. Charge neutrality: In magnetohydrodynamics, the charge density is negli-

gible small.

ρe ≡
∑
i

qini = 0, c.f. charge current: je ≡
∑
i

qinivi ̸= 0. (6.5)

where ni, qi, and vi are the number density, charge, and the mean velocities of

the particle species i.

2. Non-relativistic case: v ≪ c

3. Ohm’s law (a steady current）

je = σ(E + v ×B), (6.6)

26The vector potential A, which is related with B as B = ∇×A is converted as A → A/c. The

conversion from the SI to the cgs-gauss units is easy in this way, but the opposite conversion is not.
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where σ is the conductivity．The Hall effect due to the magnetic effect is

ignored here27.

4. Ampère’s law: In Eq. (6.4), the displacement current ∂D/∂t ca be ignored,

i.e.28 29,

∇×H = je. (6.7)

5. Other assumptions: The permittivity is set to be ε0 and the magnetic perme-

ability is µ0 (ε0µ0 = 1/c2). The electrical conductivity σ is constant in the

fluid.

(b) Basic equations in MHD

• Lorenz force on the electrically conducting fluid

The force exerted on a charged particle by the electromagnetic field is the Lorenz

force,qi(E + vi × B). Therefore, the Lorenz force on the fluid per unit volume is

given by ∑
i

niqi(E + vi ×B) = je ×B = − 1

µ0

B × (∇×B), (6.8)

where the charge neutrality, the expression of the current density in Eq. (6.5), and

Ampère’s law (6.7) are used.

This Lorenz force on the fluid is also expressed as

− 1

µ0

B × (∇×B) = −∇
(
|B|2

2µ0

)
+

1

µ0

(B · ∇)B, (6.9)

[
− 1

µ0

B × (∇×B)

]
i

=
∂

∂xj

(
− B2

2µ0

δij +
1

µ0

BiBj

)
. (6.10)

The first term on the right-hand side of Eq. (6.9)is the force due to the magnetic

pressure B2/2µ0 and the second term is the Maxwell stress tensor due to the mag-

netic field.

• The equation of motion in MHD is Euler’s equation including the Lorenz force

given by

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p− 1

µ0

B × (∇×B). (6.11)

or

27The Hall effect can be neglected when |vi − v| ≪ E/B. The generalized Ohm’s law is described in

§6.4
28The condition for the displacement current to be negligible compared to je can be written as T ≫ ε0/σ

using Ohm’s law, where T is the time in which the electromagnetic field changes according to Eq. (6.13).
29Although the charge current density je is determined by Ohm’s law, Ampère’s law is also satisfied at

the same time. Therefore, these two expressions of je should be equivalent. The reason of the equivalence

is explained as follows. If there is the difference ∆je = je − ∇ × H, an additional component of the

electric field oppoisite to ∆je is generated by Eq. (6.4), and ∆je always decreases due to Ohm’s law.

The decay time of ∆je is estimated to be ∼ ε0/σ.
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ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇

[
p+

(
|B|2

2µ0

)]
+

1

µ0

(B · ∇)B. (6.12)

• Induction equation of the magnetic field

From Ampère’s law (6.7) and Ohm’s law (6.6), the electric field E is obtained as

E = −v ×B +
1

µ0σ
∇×B. (6.13)

Taking the rotation of this equation and eliminating ∇×E from Eq. (6.3), we obtain

the so-called induction equation as

∂B

∂t
= ∇×(v ×B) +

1

µ0σ
△B, (6.14)

where a vector formula ∇×(∇×B) = ∇(∇· B) − △B and ∇· B = 0 are used.

The first term of the right-hand side is the convection term and the second is the

diffusion term. The coefficient 1/µ0σ in the second term has a dimension of the

square of length per time, and is called the magnetic diffusivity.

Denote the typical velocity by V and the typical length by L. Then the magnetic

Reynolds number Rm is defined by Rm = µ0σV L. The magnetic Reynolds number

represents the ratio of the two terms in the right-hand side of Eq. (6.14). When

Rm ≫ 1, the diffusion term is negligible, and the dynamics of such a fluid is called

the ideal magnetohydrodynamics (the ideal MHD).

• The energy equation for the magnetic field is easily derived from Eq. (6.3) rather

than from Eq. (6.14). Taking the scalar product of B and Eq. (6.3) yields

1

µ0

B · ∂B
∂t

= − 1

µ0

B · (∇×E). (6.15)

The left hand-side is
∂

∂t

|B|2

2µ0

. The right-hand side is transformed with a formula

∇· (A×B) = B · (∇×A)−A · (∇×B) as

− 1

µ0

B · (∇×E) = − 1

µ0

[∇· (E×B) +E · (∇×B)] . (6.16)

Furthermore, using Ohm’s law and Ampère’s law, we transform the second term on

the right-hand side of this equation and obtain the energy equation for the magnetic

field as
∂

∂t

(
|B|2

2µ0

)
= −∇·

(
E×B

µ0

)
− v · (je×B)− |je|2

σ
. (6.17)

The left-hand side is the time derivative of the magnetic field energy per unit volume.

The first term on the right side is the energy loss due to the energy transport of

the Poynting vector, the second term represents the work done on the fluid by the

Lorentz force, and the third term represents the magnetic energy lost as Joule heat.
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Problem 33. Momentum conservation equation in MHD: The equation of mo-

tion (6.11) or (6.12) in MHD can be rewritten in the conservation form, as in the trans-

formation of Euler’s equation into Eq. (1.18). Derive the expression for the momentum

flux density tensor, Πij, in MHD, which appears in the conservation form.

Problem 34. Derive Eq. (6.17).

Problem 35. In MHD, the energy of the electric field ε0E
2/2 is assumed to be much

smaller than the magnetic field energy B2/2µ0. The magnitude of the electric field E in

MHD can be estimated from the first or second term of the right-hand side of Eq. (6.13).

From the estimates from the first and second terms, show that the conditions for the

electric field energy to be negligible are given by

v/c ≪ 1, µ0σLc ≫ 1, (6.18)

respectively, where L is the length in which the magnetic field varies. Also, explain the

physical meaning of the second condition.

6.2 Frozen-in and diffusion of the magnetic field

• Time evolution of the magnetic flux

The magnetic flux across an area S, ΦS, is given by

ΦS =

∫
S

B · ndS. (6.19)

When the area S moves together with the fluid, the time derivative of the magnetic

flux ΦS can be written as

dΦS

dt
=

∫
S

∂B

∂t
· ndS +

∑
k

Bk ·
d∆Sk

dt
, (6.20)

where the second term of the right-hand side represents the change due to the

variation of S, and ∆Sk is the ares of k-th small part of S multiplied by n. The

change in the area S is caused by the motion of the closed curve C, which is the

boundary of S30. Denote the vector of a small interval which is a part of the closed

curve C by ∆l. When the vector ∆l moves with a velocity v, the time derivative

d∆S/dt due to the motion of ∆l is given by v ×∆l. Therefore, the second term is

rewitten as∑
k

Bk·
d∆Sk

dt
=
∑
m

Bm·(vm×∆lm) =

∮
C

(B×v)·dl =
∫
S

[∇×(B×v)]·ndS, (6.21)

where the subscript m is the number assigned to each small part of the closed curve

C. Furthermore, substituting the induction equation written as

∂B

∂t
= ∇×(v ×B)− 1

σ
∇×je, (6.22)

30Since ∇ ·B = 0, the magnetic flux is uniquely determined by the closed curve C.
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into Eq. (6.20), we obtain

dΦS

dt
= − 1

σ

∫
S

(∇×je) · ndS = − 1

σ

∮
C

je · dl. (6.23)

• Frozen-in of the magnetic field

In a fluid with a sufficiently large conductivity σ, such as a fully ionized gas, the

right-hand side of Eq. (6.23) is negligible. Such a case corresponds to the ideal

MHD. In this case, the magnetic flux is constant for any area S moving with the

fluid, and each magnetic field line must move with the fluid. This is the frozen-in

of the magnetic flux (or magnetic field lines) into the fluid. Conversely, each fluid

particle is frozen to a magnetic field line.

• Diffusion of the magnetic field

In non-ideal MHD, the magnetic field diffuses according to the induction equa-

tion (6.14). The diffusion time is given by L2µ0σ, where L is the length in which

the magnetic field varies. The decrease (or increase) in the magnetic flux across S is

because some magnetic field lines go out of (or enter) the area S, slipping from the

fluid. Conversely, it is considered that the fluid slips from the magnetic field lines.

6.3 Alfv́en waves

Sound waves are waves due to the compressibility of fluids, but incompressible waves also

exist in MHD. Let us investigate the latter MHD waves.

• As the unperturbed state, we consider a fluid of constant density ρ0 at rest in

a constant magnetic field B0. The temperature and pressure are also set to be

constant.

• Perturbations: Denote the perturbations of the density, pressure, and velocity and

the magnetic field by ρ1，p1，v1，B1, respectively. We also assume a perfect con-

ductor (σ → ∞) and adiabatic waves (s1 = 0, p1 = c2s ρ1).

• Perturbation equations

Equation of continuity ∇ · v1 = 0, (6.24)

Euler’s equation ρ0
∂v1

∂t
= −∇

(
c2sρ1 +

1

µ0

B0 ·B1

)
+

1

µ0

(B0 ·∇)B1,(6.25)

Induction equation
∂B1

∂t
= ∇×(v1×B0), (6.26)

∇ ·B1 = 0. (6.27)

• Taking the divergence of Euler’s equatoin (6.25) and using Eqs. (6.24) and (6.27),

we have

△
(
c2sρ1 +

1

µ0

B0 ·B1

)
= 0. (6.28)
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Integrating this with the boundary condition of no divergence at far away yields

c2sρ1 +
1

µ0

B0 ·B1 = const. (6.29)

Substituting this into Euler equation (6.25), we obtain

∂v1

∂t
=

1

ρ0µ0

(B0 · ∇)B1. (6.30)

• The right-hand side of the induction equation (6.26) is rewritten using a vector

formula, the equation of continuity, and B0 = constant, as

[∇×(v1×B0)]i =
∂

∂xl

(v1,iB0,l)−
∂

∂xl

(v1,lB0,i) = [(B0 · ∇)v1]i, (6.31)

and we obtain
∂B1

∂t
= (B0 · ∇)v1. (6.32)

• These perturbation equations have solutions in the form

v1 = v′
1 exp(ik · x− iωt), B1 = B′

1 exp(ik · x− iωt). (6.33)

Substituting these expressions into Eqs. (6.30) and (6.32), and eliminating B′
1, we

obtain the dispersion relation as

ω2 =
1

ρ0µ0

(B0 · k)2. (6.34)

This wave is called the Alfvén wave. The group velocity of an Alfvén wave is given

by
∂ω

∂k
=

B0√
ρ0µ0

. (6.35)

It is equal to the propagation velocity. The Alfvén waves propagate along the

magnetic field line with the Alfvén velocity vA ≡ B0/
√
ρ0µ0

31.

Consider the resilience in Alfvén waves. Suppose that a fluid moves in a magnetic field

B0 with a velocity v perpendicular to B0. Then, a current density　 je in the direction

of v×B0 is generated, and the Lorentz force je×B0 is exerted on the fluid. This Lorentz

force has the opposite direction of v and acts as a resilience.

Another valid interpretation is that the resilience is caused by the magnetic tension.

Waves in a string with a linear density λ under a force of tension T propagate with the

velocity
√

T/λ. In the case of Alfvén waves, a magnetic field has the force of tension per

unit area of B2
0/µ0, and the linear density is given by ρ0. Thus the propagation velocity

is obtained as
√

T/λ =
√

B2
0/(µ0ρ0) = vA. That is, the propagation of the Alfvén waves

is explained by the tension of the magnetic field lines.

31From §1.7 the applicable condition for the incompressible fluids is given by ω ≪ kcs or vA ≪ cs.
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6.4 Generalized Ohm’s law and induction equation in weakly

ionized plasma

Currents in magnetic fields are affected by the Hall effect and ambipolar diffusion under

certain conditions. Therefore, it is necessary to modify Ohm’s law of Eq. (6.6) for such

cases. Here, we will investigate the microscopic motion of charged particles in the elec-

tromagnetic field in weakly ionized plasmas to derive the generalized Ohm’s law. This

generalization also modifies the induction equation in the magnetic field. The importance

of this generalization in low-density, weakly ionized plasmas will be shown later.

In a weakly ionized plasma, charged particles (electrons, ions, and charged dust grains)

are much fewer than neutral particles (atoms and molecules). Charged particles are

accelerated by an electromagnetic field and decelerated by collisions primarily with neutral

particles. Consider the average velocity ui of the ith kind of charged particles of in the

frame of reference where neutral particles are at rest. The equation of motion of a charged

particle i with a mass mi and a charge qi can be written as

mi
dui

dt
= qi(E + ui ×B)− miui

τi
. (6.36)

The second term on the right-hand side represents the drag force due to collisions with

neutral particles, and τi is the deceleration time of the charged particle due to the collisions

with neutral particles, which is inversely proportional to the number density of the neutral

particles. For a light charged particle, the deceleration time τi is equal to the collision

time with a neutral particle. However, when the charged particle is heavier than each

neutral particle, τi is longer than the collision time by the mass ratio. In a weakly ionized

plasma, collisions between charged particles can be ignored. The gravitational force is

also negligible compared to the Lorentz force.

When the collision time is short enough, a steady state is realized where the two forces

on the right side of Eq. (6.36) are balanced, and the acceleration term on the left side is

negligible. We assume this steady state below. It is convenient to write this force balance

in the magnetic field as

E + ui ×B − B

βi

ui = 0, (6.37)

where the Hall parameter βi is a dimensionless parameter given by the product of the

epicycle frequency and the deceleration time of the charged particle. That is,

βi =
qiB

mi

τi. (6.38)

Note that the sign of the Hall parameter depends on the sign of the charge.

We first consider the component of the current density parallel to the magnetic field.

The velocity of a charged particle is divided into a component parallel to the magnetic field

ui∥ and a component perpendicular to the magnetic field u′
i. Dividing the electric field

(and other vectors) into two components in the same way, we obtain the average velocity

of charged particles i parallel to the magnetic field ui∥ from the parallel component of

Eq. (6.37) as

ui∥ =
βi

B
E∥. (6.39)
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Then, the parallel component of the current density j∥ is given by

j∥ =
∑
i

qiniui∥ = σCE∥, (6.40)

where the normal electric conductivity σC is given by

σC =
1

B

∑
i

qiniβi. (6.41)

Note that σC does not depend directly on B. Because electrons are less massive, their

epicycle frequency is high, and |βe| is much larger than |βi| of other charged particles.

Therefore, the contribution of electrons to the electrical conductivity is usually primary,

and σC ≃ ene|βe|/B32.

The component of the current density perpendicular to the magnetic field is obtained

from the perpendicular component of Eq. (6.37)

E′ + u′
i ×B − B

βi

u′
i = 0. (6.42)

Taking the vector product of this equation and B and noting that (u′
i×B)×B = −u′

iB
2,

we obtain

E′ ×B − B2u′
i −

B

βi

(u′
i ×B) = 0. (6.43)

Eliminating u′
i ×B from Eqs. (6.42) and (6.43), we obtain the perpendicular component

of the velocity u′
i as

u′
i =

βi

B(1 + βi)
E′ +

β2
i

B2(1 + βi)
E′ ×B, (6.44)

and the perpendicular component of the current density j ′ is can be written as

j ′ =
∑
i

qiniu
′
i = σ⊥E

′ − σH

B
E′ ×B, (6.45)

where the coefficients σ⊥ and σH are given by

σ⊥ =
1

B

∑
i

qiniβi

1 + β2
i

, σH = − 1

B

∑
i

qiniβ
2
i

1 + β2
i

(6.46)

respectively, and have the same dimension as σC. To solve this equation for E′, we

perform the same operation as in the derivation of Eq. (6.44) from (6.42), and as a result,

we obtain

E′ =
1

σ2
⊥ + σ2

H

(
σ⊥j

′ +
σH

B
j ′ ×B

)
. (6.47)

32It can occur that the most of electrons are absorbed into dust grains. In such a limiting case, the

electrical conductivity is determined by the terms of ions
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Combining the parallel component of Eq. (6.40) and the perpendicular one of Eq. (6.47),

and noting that j×B = j ′×B and (j ′×B)×B = −j ′B2, we finally obtain the electric

field as

E =
1

σC

j +
ηH
B

j ×B − ηA
B2

(j ×B)×B, (6.48)

where the new coefficients ηH and ηA are given by

ηH =
σH

σ2
⊥ + σ2

H

, ηA =
σ⊥

σ2
⊥ + σ2

H

− 1

σC

, (6.49)

respectively. Up to this point, we used the rest frame of neutral particles. This is the rest

frame of the fluid since the neutral particles have the most of the fluid mass. The electric

field in a frame of reference where the fluid flows with a velocity v is obtained as

E = −v ×B +
1

σC

j +
ηH
B

j ×B − ηA
B2

(j ×B)×B. (6.50)

This is the generalized Ohm’s law. The third term on the right side represents the Hall

effect, and the fourth is due to the ambipolar diffusion. Furthermore, by using Eq. (6.50),

the generalized induction equation that includes the Hall effect and the ambipolar diffusion

can be obtained as

∂B

∂t
= ∇×

[
v×B − 1

µ0σC

∇×B − ηH
µ0B

(∇×B)×B +
ηA

µ0B2
((∇×B)×B)×B

]
. (6.51)

Finally, let us see under which conditions the Hall effect (or the ambipolar diffusion)

becomes effective. To do this, we estimate the magnitudes of the coefficients of the Hall

effect and the ambipolar diffusion, ηH, ηA. These coefficients are determined by the

abundances of each type of charged particles or by the Hall parameters βi (see Eq. [6.46]).

As mentioned above, the Hall parameters are inversely proportional to the number density

(or density) of the neutral particles, and increase as the decreasing density. And |βe| of
electrons is larger than |βi| of other charged particles. Therefore, as the gas density

decreases, the Hall parameters vary from the following case A to case C: (A) |βi| ≪ 1

for all kinds of charge particles, (B) |βe| ≫ 1 and |βi| ≪ 1 for other charged particles,

and (C) |βi| ≫ 1 for all kinds of charged particles. We examine the magnitudes of the

coefficients for the Hall effect and the ambipolar diffusion for these three cases.

Case A: |βi| ≪ 1 for all kinds of charged particles

This corresponds to the case of high gas densities. In this case, since the denominators in

Eq. (6.46) are approximately unity, σ⊥ is equal to σC, and they are much larger than σH.

Furthermore, these are determined by the electron terms since |βe| ≫ |βi|. As a result,

from Eq (6.49), we see that the coefficients ηH and ηA are both much smaller than 1/σC.

Thus, the terms of the Hall effect and the ambipolar diffusion can be ignored compared

to the ohmic dissipation term in the generalized Ohm’s law (6.50) and the induction

equation (6.51).

69



Case B: |βe| ≫ 1 and |βi| ≪ 1 for other charged particles

This case has a lower gas density than Case A but a higher one than Case C. In this

case, σH is determined by the electron term and is approximately given by σH ≃ ene/B ≃
σC/|βe|. On the other hand, σ⊥ is much smaller than σH. Thus, we find that ηH ≫
1/σC, ηA. Therefore, the Hall effect term is much larger than the ohmic dissipation and

the ambipolar diffusion terms in the generalized Ohm’s law and induction equation33.

Case C: |βi| ≫ 1 for all kinds of charged particles

This corresponds to the case where the gas density is low enough (or the magnetic field is

strong enough). In this case, the factors of β2
i of the numerator and denominator cancel

out in each term of σH, and σH becomes as small as O(|βi|−2) due to the charge neutrality.

On the other hand, σ⊥ is O(|βi|−1). Then, the coefficients satisfy ηA ≫ ηH ≫ 1/σC, and

the ambipolar diffusion term overcomes the others. As a result, the effective electrical

conductivity in the direction perpendicular to the magnetic field is extremely small. The

low electrical conductivity is due to the epicycle motion of the charged particles (or the

frozen-in of the charged particles to the magnetic field line). Then, the collisions with

neutral particles help the electrical conduction in this direction. The conductivity σ⊥

is determined by ions, which have a low epicycle frequency and a large gyration radius.

Thus, σ⊥ = qini/(βiB) = mini/(τiB
2).

33When ηH/B = 1/(ene) is constant，the term of the Hall effect in the induction equation is perpen-

dicular to B, and cannot change the magnetic energy.
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7 Mechanics of Disk Objects

7.1 Basic equations

(a) Astronomical disk objects

An astronomical object that contracts due to the self-gravity will inevitably rotate

at high speed due to the reduction of its moment of inertia if its angular momentum

is not efficiently transferred to the outside due to a magnetic field or other process.

When the rotational velocity increases to the point where centrifugal force and

gravity are roughly balanced, the object becomes disk-shaped. Examples of such

disk objects are as follows.

• Galaxy = bulge + galactic disk + halo.

• Accretion disks, e.g., black-hole accretion disks, protoplanetary disks, etc.

(b) Basic equations for two-dimensional disks

• Two-dimensional approximation:

Thin disks are assumed. Their vertical structure will be described later.

Surface density: Σ =

∫ ∞

−∞
ρdz, 2D pressure: P =

∫ ∞

−∞
pdz, (7.1)

vz = 0,
∂v

∂z
= 0. (7.2)

• Equation of continuity (2D polar coordinates (r, ϕ))

∂Σ

∂t
+

1

r

∂

∂r
(rΣvr) +

1

r

∂

∂ϕ
(Σvϕ) = 0. (7.3)

• Two-dimensional Euler’s equation34

r component:
∂vr
∂t

+ vr
∂vr
∂r

+
vϕ
r

∂vr
∂ϕ

−
v2ϕ
r

= − 1

Σ

∂P

∂r
− GMc

r2
− ∂ΦD

∂r
, (7.4)

ϕ component:
∂vϕ
∂t

+ vr
∂vϕ
∂r

+
vϕ
r

∂vϕ
∂ϕ

+
vrvϕ
r

= − 1

rΣ

∂P

∂ϕ
− 1

r

∂ΦD

∂ϕ
, (7.5)

where Mc is the mass of the central object and ΦD is the gravitational potential

of the disk.

• 3D Poisson’s equation

△ΦD = 4πGΣδ(z) (7.6)

34In 2D polar coordinates, additional terms −erv
2
ϕ/r + eϕvrvϕ/r appear in (v · grad)v. The velocity

vector is expressed with basis vectors as v = vrer + vϕeϕ. Noting that grad = (∂/∂r, 1/r∂/∂ϕ) also acts

on the basis vectors, and using ∂er/∂ϕ = eϕ and ∂eϕ/∂ϕ = −er, we can obtain these additional terms.
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• Equation of state

P = K ′Σγ′
(γ′ = 1 for isothermal case). (7.7)

Problem 36. Derive the equation of angular momentum conservation that takes

the gravity the central object into account, from the equation of continuity (7.3)

and the ϕ component of Euler’s equation (7.5). Disk gravity can be treated as an

external force.

(c) Vertical structure of disks

• For a thin disk, the vertical hydrostatic equation is obtained from the z com-

ponent of Euler’s equation as

1

ρ

∂p

∂z
= −Ω′ 2z, (7.8)

where the vertical angular frequency Ω′ is given by

Ω′ 2 =
GMc

r3
+

∂2ΦD

∂z2
(z = 0). (7.9)

If the disk gravity is negligible, Ω′ is equal to the Keplerian angular velocity

(GMc/r
3)1/2.

• The vertical density profile of the disk can be obtained by solving the vertical

hydrostatic equation (7.8). For vertically isothermal cases, we have

ρ(z) =
Σ√
2πh

e−z2/2h2

. (7.10)

The vertical disk scale height h is given by

h =
cs
Ω′ , (7.11)

where cs is the isothermal sound velocity with γ = 1. For polytropic disks, we

obtain

ρ(z) = ρ(0)

(
1− (γ − 1)z2

2h2

)1/(γ−1)

. (7.12)

In this case, h is also given by Eq. (7.11), but cs in it is evaluated at z = 0.

• Flows obtained using the two-dimensional disk approximation is valid if the

characteristic length of flows is sufficiently longer than the disk scale height

h. However, for local phenomena in disks, the characteristic length is often

comparable to h. In such cases, 2D approximation is not accurate, but the

error is expected to be of the order of unity and the qualitative properties

of the flows would not change. We can say that the two-dimensional disk

approximation is not valid for phenomena where the characteristic length is

much shorter than h.
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Problem 37. Derive the equations of the vertical density profile (7.10) and (7.12).

Problem 38. If the gas disk satisfies the polytropic relation (1.25) with γ > 1, show that

a similar power relation (7.7) holds between the surface density Σ and the two-dimensional

pressure P . This relation is obtained by integrating the disk vertical profile (7.12). Also

find the relation between the indexes γ and γ′.

(Hint: First, find the power-law dependences of Σ and P on ρ(0).)

7.2 Gravitational instability of disks

Using the basic equations (7.3)-(7.7) of the two-dimensional approximation in the previous

section, we can conduct a linear stability analysis and investigate the self-gravitational

instability of disks. Here, we particularly examine local gravitational instability.

(a) Perturbations

Each quantity is divided into an unperturbed component (index 0) and a perturbed

component (index 1).

Σ = Σ0 + Σ1, P = P0 + P1 (P1 = c2sΣ1),

vr = vr,1, vϕ = rΩ(r) + vϕ,1, ΦD = ΦD,0 + ΦD,1,

where c2s = γ′K ′Σ0
γ′−1. From the balance among the centrifugal force, the gravita-

tional forces by the central star and the disk, and the pressure gradient, the angular

velocity, Ω, of the unperturbed disk rotation is obtained as

Ω2 =
GMc

r3
+

1

r

∂ΦD,0

∂r
(z = 0) +

1

r

∂H0

∂r
, (7.13)

where H0 =
γ′

γ′−1
P0/Σ0 is the unperturbed enthalpy. The angular velocity Ω gener-

ally has a radial dependence. In the Keplerian rotation, Ω ∝ r−3/2 while Ω ∝ 1/r

for galactic disk. A rotation in which Ω depends on r is called a differential rotation,

and a rotation in which Ω is independent of r is called a rigid rotation.

(b) WKB approximation

We consider perturbations with sufficiently large wave numbers in the radial direc-

tion. For such perturbations, the unperturbed state can be regarded as constant at

a distance of the wavelength, so

perturbations ∝ exp(ikr + imϕ− iωt), (7.14)

and the derivative of them satisfies∣∣∣∣ ∂∂r
∣∣∣∣≫ 1

r

∣∣∣∣ ∂∂ϕ
∣∣∣∣ , 1

r
. (7.15)
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This is the WKB (Wentzel–Kramers–Brillouin) approximation. It assumes that

the radial component of the wavenumber vector is much larger than that the ϕ

component. This assumption is reasonable because the perturbations are stretched

in the ϕ direction in a differentially rotating disk.

(c) Vertical integration of Poisson’s equation

Under theWKB approximation, the perturbation equation of Poisson’s equation (7.6)

is written as (
∂2

∂r2
+

∂2

∂z2

)
ΦD,1 = 4πGΣ1δ(z). (7.16)

Integrating this equation from z = −ϵ to +ϵ (ϵ ≪ 1), and assuming vertical sym-

metric disks, we obtain(
∂ΦD,1

∂z

)
z=+0

= −
(
∂ΦD,1

∂z

)
z=−0

= 2πGΣ1. (7.17)

Furthermore, since Eq. (7.16) is given by

(
∂2

∂r2
+

∂2

∂z2

)
ΦD,1 = 0 for z ̸= 0, we have

ΦD,1 ∝ e−k|z| exp(ikr + imϕ− iωt). (7.18)

From Eqs. (7.17) and (7.18), we obtain

ΦD,1(z = 0) = −2πGΣ1/k. (7.19)

(d) Other perturbation equations and a dispersion relation

• Equation of continuity

i(mΩ− ω)Σ1 + ikΣ0vr,1 +
imΣ0

r
vϕ,1 = 0. (7.20)

• Euler’s equation(
i(mΩ− ω) −2Ω

−2B i(mΩ− ω)

)(
vr,1
vϕ,1

)
=

(
c2sΣ1

Σ0

+ ΦD,1

)(
−ik

−im/r

)
.

(7.21)

Solving this yields(
vr,1
vϕ,1

)
=

1

∆

(
c2sΣ1

Σ0

+ ΦD,1

)(
(mΩ− ω)k

−i2Bk

)
, (7.22)

where

B = − 1

2r

d(r2Ω)

dr
(Oort constant),

∆ = κ2 − (mΩ− ω)2,

κ2 = −4BΩ ( epicycle frequency).

(7.23)
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• Substituting Eqs. (7.19) and (7.22) into (7.20), we have(
1 +

c2sk
2 − 2πGΣ0k

∆

)
Σ1 = 0. (7.24)

Therefore, we obtain the dispersion relation

(mΩ− ω)2 = c2sk
2 − 2πGΣ0k + κ2. (7.25)

(e) Stability condition

• If the frequency ω is real, the perturbation is stable. For real ω, the right-hand

side of the dispersion relation must be positive for all k. That is, the stability

condition is that “κ2 > 0 ” and “the discriminant for the right-hand side =

0 is negative” hold. The former requires that the specific angular momentum

l (= r2Ω) increases with r. It is called the Rayleigh’s stability condition for

rotating disks. From the latter, we obtain Toomre’s stability condition

Q ≡ csκ

πGΣ
> 1. (7.26)

where Q is called Toomre’s Q value.

• The critical wavelength with Q = 1 is given by

λcrit = 2π/kcrit = 2πcs/κ. (7.27)

Since three frequencies κ,Ω,Ω′ are comparable, the critical wavelength is com-

parable with the disk scale height h. Therefore, Toomre’s stability condition

may change somewhat due to the effect of the disk thickness. On the other

hand, for a thin disk, λcrit is sufficiently short compared to the disk radius, so

the WKB approximation is accurate.

• With the above analysis, it is not possible to clarify the instability of global

perturbations whose wavelength is comparable with the disk radius. Studies

on the excitation of such global modes due to gravitational instability show

that a two-armed spiral wave is excited at Q ∼ 1. In other words, Toomre’s Q

value is a good index of gravitational instability even for global modes.

Problem 39. Q value of the galactic disk at the solar neighborhood.

The combined density of stars and interstellar gas near the sun, at 8 kpc from the galactic

center, is estimated to be about 0.1 M⊙/pc
3. The surface density Σ of the galactic disk

can be estimated by the product of this local density and the disk thickness h. Assuming

that the speed of disk rotation is 200 km/s and approximating Ω′ = κ, estimate the Q

value of the galactic disk at the solar neighborhood. (The solar mass is 2 × 1030 kg and

1pc = 3 × 1016m.) The result of the estimation is Q ≃ 1. This suggests that the spiral

structure of the galactic disk is due to gravitational instability.
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Problem 40. Q value of a protoplanetary disk. The temperature of a protoplan-

etary disk is determined by the radiation from the host star, and is approximately given

by

T =

(
L⊙

16πσr2

)
≃ 300(r/1AU)−1/2K (7.28)

for the protoplanetary disk around the sun (Hayashi et al. 1986). Furthermore, the surface

density of the disk that created the solar system is expected to be 2000 g/cm2 at 1 AU.

Find the sound velocity at 1 AU and estimate the Q value of the protoplanetary disk at

1 AU. Also, find the disk surface density at 100 AU, Σ100AU, when the disk has Q = 1 at

100AU (a typical disk radius), and estimate the mass of a marginally unstable disk using

Md = π(100AU)2Σ100AU.

7.3 Evolution and structure of accretion disks

Accretion disks around black holes and protoplanetary disks evolve due to viscosity. Here

we describe the evolution of viscous accretion disks. An accretion disk rotates around

its host star at approximately Keplerian angular velocity. It is a differential rotation,

where the inner part rotates rapidly and the outer part rotates slowly. When viscosity

acts on a differentially rotating disk, the rapidly rotating inner disk material experiences

a negative torque from the outer material and slows down. Thus, viscosity transfers

angular momentum from the inner disk to the outer disk. The inner disk loses the angular

momentum and falls inward, while the outer disk expands outward. This results in mass

accretion onto the host star, reducing the disk mass and increasing the disk radius.

7.3.1 Basic equations for accretion disks

We examine the evolution of the viscous accretion disk in detail using the hydrodynamical

equations with the addition of viscous effects. We consider an axi-symmetric disk, which

is assumed here to be a two-dimensional disk. To describe the disk, we use the polar coor-

dinate system (R, ϕ) with the host star at the origin. For two-dimensional axi-symmetric

disks, the equation of continuity (7.3) is rewritten as

∂Σ

∂t
+

1

R

∂

∂R
(RΣvR) = 0. (7.29)

We do not consider any inflow onto the disk or outflow except the accretion onto the

host star. For accretion disks, we use the Navier-Stokes equation with the viscosity term

instead of the Euler equation. Around a host star, the Navier-Stokes equation is given by

∂v

∂t
+ (v · grad)v = −1

ρ
grad p+ grad

(
GMc

r

)
+

1

ρ
divΠ′ (7.30)

where Π′ is the viscous stress tensor given by35

Π′
ij = ρν

(
∂vi
∂xj

+
∂vj
∂xi

)
(7.31)

35For accretion disks, the gas velocity in the frame rotating with the disk is smaller than the sound

speed and we can assume the incompressible fluid.
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where ν is the kinetic viscosity. We do not consider any external forces other than the

gravity of the host star. For two-dimensional axi-symmetric disks, the ϕ-component of

the Navier-Stokes equation is rewritten as36

∂vϕ
∂t

+ vr
∂vϕ
∂r

+
vrvϕ
r

=
1

Σ

(
1

r

∂ rΠ′
rϕ

∂r
+

Π′
rϕ

r

)
(7.32)

and the r, ϕ-component of the viscous stress, Π′
rϕ, is given for two-dimensional disks by

Π′
rϕ = Σν

(
∂vϕ
∂r

− vϕ
r

)
= Σνr

dΩ

dr
. (7.33)

By the definition of the viscous stress, Π′
rϕ(r) represents the ϕ component of the force

(per unit length) exerted on the inner disk material by the outer material tangent to the

inner material at R. The angular velocity of the disk, Ω, is determined by the balance

mainly between the stellar gravity and centrifugal force in the radial component of the

equation (7.30) and is approximately given by ΩK. As seen in the equation (7.33), the

sign of the viscous stress Π′
Rϕ is determined by the gradient of Ω. In a uniformly rotating

disk with constant Ω, the viscous stress does not work. In Keplerian disks with ΩK, the

negative viscous torque is exerted on the inner material by the outer material.

The angular momentum conservation equation for accretion disks is obtained from the

equations (7.29), (7.32), and (7.33) as

∂

∂t
(Σ j) +

1

r

∂

∂r

(
rΣ jvr − r3Σν

dΩ

dr

)
= 0, (7.34)

where j (=R2Ω) is the specific angular momentum. The second term in the left-hand side

of the equation (7.34) is the divergence of the radial angular momentum flux (density).

The first term of the angular momentum flux shows the flux due to advection and the

second is that due to the viscous torque. Using the equations (7.29) and (7.34), and

noting that ∂j/∂t = 0, we also obtain vR and the inward mass flux (i.e., the accretion

rate) of the disk as

Ṁ ≡ −2πrΣ vr = − 2π

(dj/dr)

∂

∂r

(
r3Σ ν

dΩ

dr

)
. (7.35)

Substituting this into the equation (7.29), we finally obtain the equation describing the

viscous evolution of accretion disks as

∂Σ

∂t
+

1

r

∂

∂r

[
1

(dj/dr)

∂

∂r

(
r3Σν

dΩ

dr

)]
= 0. (7.36)

36In the polar coordinate system, the term of (v·grad)v has additional terms −eRv
2
ϕ/R+eϕvRvϕ/R and

the latter one appears in the equation (7.32). Since the velocity vector is expressed as v = vReR + vϕeϕ,

the gradient operates on the basis vectors as well as the velocity components. Noting this, and using

∂eR/∂ϕ = eϕ and ∂eϕ/∂ϕ = −eR, we can obtain the additional terms above. The additional term of the

viscosity term in the equation (7.32) and that of the viscous stress in the equation (7.33) are also derived

in the same way.
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For a disk in Keplerian rotation with Ω = ΩK, it is reduced to

∂Σ

∂t
+

3

r

∂

∂r

[
r1/2

∂

∂r

(
r1/2νΣ

)]
= 0. (7.37)

The viscosity of accretion disks is determined by the turbulent viscosity, not the molec-

ular viscosity. The origin of the turbulence has not yet been determined for protoplan-

etary disks, although magneto-rotational instability and self-gravitational instability are

strong candidates, and the magnitude of the viscosity has a large uncertainty. Therefore

the kinetic viscosity of accretion disks is often expressed in terms of a non-dimensional

parameter as

ν = αh2Ω. (7.38)

This simple expression for the viscosity is known as the Shakura-Sunyaev α prescription

and α is called Shakura-Sunyaev α parameter (Shakura & Sunyaev, 1973).

7.3.2 Solution for steady-state accretion disks

We consider a steady solution for (inward) accreting disks. Setting ∂/∂t = 0 in the

equations (7.36) and (7.34), we obtain the mass and angular momentum fluxes as

Ṁ = const., (7.39)

J̇ ≡ jṀ+ 2πr3Σν
dΩ

dr
= const. (7.40)

Note that inward fluxes are defined to be positive. For accretion disks, thus, Ṁ is positive.

Furthermore, assuming Σ = 0 at the inner disk edge rin as the inner boundary condition,

we obtain

J̇ = Ṁj(rin). (7.41)

Substituting this into the equation (7.40), we obtain the steady surface density as

Σ = −Ṁ j(r)− j(rin)

2πνr3(dΩ/dr)
. (7.42)

For Keplerian disks, it is rewritten as

Σ =
Ṁ
3πν

(
1−

√
rin
r

)
. (7.43)

7.3.3 Similarity solution for accretion disks

Next we consider a time-evolving solution to equation (7.37). Suppose that the kinematic

viscosity is given by a power-law function

ν = ν0R
γ. (7.44)
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In this case, it is known that there exists a similarity solution (Lynden-Bell & Pringle

1974)37. In the similarity solution for an accretion disk, the disk radius and surface density

evolve with time, but the surface density distribution remains in a similar form.

(a) Dimensional analysis for evolution of accretion disks

The time evolution of the similarity solution can be clarified by dimensional analysis. An

accretion disk spreads due to viscosity and its radius Rd increases. Suppose that the disk

is formed at t = 0 in a small size and then spreads out due to the viscous effect. Since

the equation (7.37) is a second-order differential equation for space and has the form of a

diffusion equation, time t is approximately equal to the viscous diffusion time of the disk,

R2
d/ν(Rd). Then, also using the equation (7.44), the radius of the disk is approximately

given by a power-law function of time as

Rd ≃ (ν0t)
1

2−γ . (7.45)

Note that ν0 does not have the dimension of the diffusion coefficient [cm2s−1].

In the similarity solution, the inner edge radius Rin is assumed to be much smaller than

the disk radius. Since the angular momentum flux at the inner edge is also negligibly small,

the total angular momentum, Jd, of the disk is conserved. We can use the constant Jd to

estimate the evolution of the disk mass. Estimating the characteristic value of the specific

angular momentum of the disk as R2
d Ω(Rd), the disk mass Md is approximately given by

Md ≃ Jd
R2

d Ω(Rd)
∝ t−

1
2(2−γ) . (7.46)

In the above, the time dependence is derived using Ω ∝ R−3/2. Furthermore, the charac-

teristic value of the disk surface density can be estimated as

Σ(Rd(t), t) ≃
Jd

R4
d Ω(Rd)

∝ t−
5

2(2−γ) . (7.47)

The similarity solution for the surface density also depend on a non-dimensional “simi-

larity” variable, y = r2−γ/(ν0t) ≃ (r/Rd)
2−γ. The surface density distribution of the disk

is determined by its y-dependence.

(b) Exact form of the similarity solution

The similarity solution to (7.37) is written as (Lynden-Bell & Pringle 1974; Hartmann et

al. 1998; see also Appendix for the derivation)

Σ(r, t) =
|Ṁd(t)|
3πν

exp

[
−
(

r

Rd(t)

)2−γ
]
, (7.48)

The disk radius Rd is given by

Rd =
[
3(2− γ)2ν0t

] 1
2−γ (7.49)

37Surprisingly, a similarity solution also exists in a non-linear case where the kinematic viscosity is given

by ν = ν0R
γΣδ (Pringle 1974; Cannizzo et al. 1990). Even in the non-linear case, the time evolution of

the disk radius and mass can be estimated by dimensional analysis similar to (a) in this subsection and

the exact solution can be obtained from a derivation similar to (b).
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and the disk mass Md and its time derivative are

Md =
Jd

Γ(b)R2
dΩ(Rd)

, Ṁd = − Md

2(2− γ)t
, (7.50)

where b = (5 − 2γ)/(4 − 2γ) and Γ(b) is the Gamma function. We can see that these

expressions of the similarity solution are consistent with the above estimates by dimen-

sional analysis. We also find that the similarity solution (7.48) agrees with the steady

solution (7.42) in the radial range of rin ≪ r ≪ Rd. In this range Σ is proportional to 1/ν

or r−γ, and it is exponentially truncated at a radius Rd. The inward mass and angular

momentum fluxes are written as

Ṁ = −2πrΣvr = 3πνΣ

[
1− 2(2− γ)

(
r

Rd

)2−γ
]
, (7.51)

J̇ = −6π(2− γ)jνΣ

(
r

Rd

)2−γ

, (7.52)

respectively. The angular momentum is always transferred outward in the similarity

solution. The equation (7.51) also gives the radial velocity.

We estimate the life time of protoplanetary disks using the similarity solution. Adapt-

ing the α prescription for the viscosity (equation [7.38]) and assuming a constant α and

T ∝ r1/2, we obtain ν ∝ r and γ = 1. The disk life time is approximately given by

td ≃ R2
d

3(2− γ)2ν
=

R2
d

3αh2Ω(Rd)
. (7.53)

If α = 10−3, the life time of a protoplanetary disk is estimated to be 5 Myr for the disk

with the radius of 100au (and h/Rd ≃ 0.1), which is almost consistent with the observed

life time of protoplanetary disks. Thus we expect that α = 10−3 might be the typical

value for protoplanetary disks. The second equation of (7.50) gives a simple relation

between the mass accretion rate and the disk mass. For a 1Myr old disk with the mass

of 0.02M⊙, the mass accretion rate is obtained as 10−8M⊙/yr, which is the typical value

of the observed accretion rate.

(c) Derivation of the similarity solution

We briefly describe the derivation of the similarity solution. From the given parameters,

ν0 and Jd, and two independent variables, r and t, we can form only one dimensionless

variable, which can be written as

y =
r2

νt
=

r2−γ

ν0t
. (7.54)

The time and radial dependences of the similarity solution are described only by this

dimensionless variable y. The radial distribution of the angular momentum spreads out

with the increase in the disk radius, but its distribution in the y-space does not change

due to the similarity. That is, the angular momentum of the disk inside a radius r that

changes so that y =constant, must remain constant. It is easy to write down the equation
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that expresses the constancy of this angular momentum. The angular momentum flowing

out of a radius r in unit time is given by the angular momentum flux, −J̇ , which is

defined by the equation (7.40). On the other hand, since the radius r corresponding to

a given y increases with the velocity of dr(y)
dt

, an area inside the radius r(y) increases in

unit time by 2πr dr(y)
dt

, and the angular momentum in this additional area is jΣ2πr dr(y)
dt

.

These angular momenta equals due to constancy of the angular momentum distribution

in the y-space, and we obtain

Ṁ ≡ −2πrΣvr = 2πβνΣ

[
1− y

β(2− γ)

]
. (7.55)

Using Eqs. (7.49) and (7.54), we can see that this is equal to Eq. (7.51).

The solution of the surface density can be expressed as

Σ =
Jd

r4Ω(r)
f(y), (7.56)

where f(y) is a dimensionless function and the prefactor has the dimension of a surface

density. Substituting these expressions for Σ and vr into the equation (7.35), we obtain a

differential equation for f as d lnf/d lny = −y/[3(2−γ)2]+ b. Solving this equation yields

the solution

f =
2− γ

2πΓ(b)
xb exp(−x) (7.57)

with the new variable x = y/[3(2−γ)2], and also gives Σ. In the equation (7.57), the coef-

ficient is determined by the condition that the total angular momentum calculated with Σ

should equal Jd. Using this solution of Σ, we obtain the disk mass as the equation (7.50).

Finally, using the equation (7.50), the solution of Σ is rewritten as the equation (7.48).

Problem 41. Show that dr(y)/dt = νy/[(2− γ)r] and derive Eq. (7.55). Also derive

the differential equation for f(y) and its solution (7.57).

Problem 42. Derive Eqs. (7.50) and (7.48).

Problem 43. The obtained similarity solution (7.48) is physically meaningless when the

power-law index γ of the viscosity is larger than 2. Find the physical reason why γ < 2

is required for the similarity solution by explaining how the physical property of the disk

evolution changes between the cases with γ < 2 and γ > 2.

Problem 44. A similarity solution had also been derived for accretion disks where the

viscosity also depends on the surface density as ν = ν(r,Σ) = ν0r
γΣδ (Pringle 1974, 1991;

Cannizzo et al. 1990)．Let us obtain such a similarity solution in the same way as above.

1. Using the characteristic disk radius Rc, the characteristic value of the surface density

Σc is given by Σc = Jd/[R
4
cΩ(Rc)]. The characteristic disk radius Rc also satisfies

R2
c = tν(Rc,Σc). Then, show Rc(t) = [(Jd/

√
GM∗)

δν0t]
1/a, where a = 2 − γ + 5

2
δ

(cf. eq. [7.45]).
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2. In this case, the dimensionless variable y is defined by y ≡ r2/[tν(r,Σr)] = [r/Rc(t)]
a,

where Σr = Jd/[r
4Ω(r)] (cf. eq. [7.54]). Solving this difinition of y for r yields

r(y) = Rc(t)y
1/a. Then, show that dr(y)/dt and the inward mass flux are given by

dr(y)

dt
=

ν(r,Σr)y

ar
, Ṁ = 3πνΣ

[
1− 2y

3a

(
Σ

Σr

)−δ
]
. (7.58)

The derivation is similar to that of Eq. (7.55).

3. The similarity solution is written as Σ = Σrf(y). From the equivalence of Eqs. (7.35)

and (7.58), derive the differential equation for f(y),
df δ

dy
− A

f δ

y
+ B = 0, where

A =
1 + 1

2a

1 + 1
δ

and B =
1

3a2(1 + 1
δ
)
.

4. Solve the differential equation for f(y) and show that the solution for the disk surface

density with the total angular momentum Jd is given by

Σ = C
Jd
r4Ω

(xA − x)1/δ, x =
B y

(1− A)Cδ
, C =

[
2π

a

∫ 1

0

(xA − x)1/δ
dx

x

]−1

. (7.59)

7.3.4 Disk heating by viscous dissipation

The dissipation energy due to viscosity per unit volume per unit time, ϵ, is given for

axi-symmetric Keplerian disks by

ϵ = Π′
ik

∂vi
∂xk

= ρν

(
r
dΩ

dr

)2

=
9

4
ρνΩ2. (7.60)

Vertical integration gives the heating rate per unit area of the disk. It is balanced by the

radiative cooling rate at the upper and lower disk surfaces given by 2σT 4
s , where Ts is

the temperature at the disk surface. Furthermore, assuming a steady accretion disk, the

surface temperature is obtained as

Ts =

(
3GM∗Ṁ
8πσr3

)1/4

∝ r−3/4. (7.61)

It is assumed above that r ≫ rin. The mass accretion rate of Ṁ = 10−8M⊙/yr gives Ts =

90K at 1au. This is lower than the temperature of the Hayashi model for protoplanetary

disks, which is heated by the stellar radiation38. Since Ts has a steeper radial gradient

38The ratio between two temperatures given by the equations (7.61) and (7.28) is determined by the

ratio of the viscous heating rate to that by the stellar radiation, which given by

6GM∗Ṁ/R

L∗
≃ 10−2

(
Ṁ

10−8M⊙/yr

)(
M∗

M⊙

)(
L∗

L⊙

)−1 ( r

1au

)−1

.
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than that of the Hayashi model, the viscous heating can dominate the stellar radiation

heating at an inner radius with R ≪ 1au.

Optically thick protoplanetary disks can have an inner temperature much higher than

Ts. When the energy dissipation due to viscosity is concentrated to the disk midplane

or uniformly distributed (i.e., the dissipation rate ∝ ρ), the midplane temperature is

approximately given by ∼ τ 1/4Ts, where the vertical optical depth τ is defined by κRΣ

and κR is the Rosseland mean opacity of the disk material. However, if the viscous heating

occurs only at the disk surface, the midplane temperature is similar to Ts (Mori et al.

2019).

We also describe the energy balance for unit mass of viscous accretion disks. Taking

the scalar product of the equation (7.30) with v, we obtain the equation for the kinetic

energy per unit mass as[
∂

∂t
+ (v · grad)

](
v2

2

)
= −1

ρ
v · grad p− v · grad

(
−GM∗

r

)
+

1

ρ
div (v ·Π′)− 1

ρ

∂vi
∂xk

Π′
ik. (7.62)

In the above equation, the term of the pressure gradient can be neglected since c2s ∼ p/ρ

is much smaller than the rotational energy of v2ϕ/2 = r2Ω2/2 for standard thin accretion

disks. Furthermore, since |vR| ≪ |vϕ|, the kinetic energy of v2/2 is replaced by v2ϕ/2 and

only Π′
rϕ should be considered for the viscous stress tensor. Thus the equation (7.62) can

be rewritten for two-dimensional disk as

vr
∂

∂r

(
r2Ω2

2

)
= −vr

∂

∂r

(
−GM∗

r

)
+

1

Σr

∂

∂r

(
−3

2
Σνr2Ω2

)
− 9

4
νΩ2. (7.63)

The meaning of each term is obvious. The left-hand side is the energy increase due to

the acceleration of the disk rotation for accretion disks with vr < 0. The first term on

the right is the work done by the stellar gravity. We find that the ratio between these

terms is 1/2 : 1, as also derived from the virial theorem. Half of the stellar gravitational

energy remains. The second term on the right represents the net energy gain due to the

work done by the torques exerted by the inner and outer parts, and the third term is

the loss of the kinetic energy due to viscous dissipation. For steady accretion disks with

Ṁ ≡ −2πrΣvr = 3πΣν, vr = −3ν
2r

and the third term is equal to vr(∂r
2Ω2/∂r). Then, we

find that these four terms are in the ratio 1/2 : 1 : 1 : -3/2. The viscous heating costs the

three times the remaining stellar gravitational energy. The deficit is supplied by the net

work by the inner and outer viscous torques. This energy balance for steady accretion

disks is governed by the Keplerian rotation law and is independent of the property of

viscosity. It is also applicable to particle disks such as planetesimal disks or planetary

rings.
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8 Fundamentals of Relativistic Fluid Dynamics

8.1 Minimal elements in the special theory of relativity

There are flows with velocities close to the speed of light in space.

An example is a relativistic jet ejected from a compact object. To study such flows,

fluid mechanics based on the theory of relativity is necessary. In this chapter, we will

derive basic equations of relativistic fluid dynamics and see how the Newtonian fluid

dynamics is extended. Before we derive the hydrodynamic equations, let us briefly review

the basics of special relativity39.

(a) Principle of relativity and Lorentz transformation

Einstein’s principle of relativity consists of the following two principles.

• Principle of relativity: The laws of physics are identical in all inertial frames

of reference. Therefore, the speed of light propagating in a vacuum must be

the same from the point of view of any inertial frames.

• The upper limit on velocity: In the theory of relativity, an interaction

between two objects occurs when information propagates from one object to

the other at a finite speed. There is an upper limit to this propagation speed

and the speed of objects, and the upper limit is the speed of light40.

In Newtonian mechanics, time is absolute regardless of the frame of reference. There-

fore, the velocity of objects and the speed of light vary with each inertial frame and

are relative quantities. On the other hand, in the theory of relativity, absolute time

is not allowed because the speed of light is assumed to be constant, and different

times are used in each inertial frame. The time and space coordinates of the two in-

ertial frames are transformed into each other by the Lorentz transformation. If, for

an inertial coordinate system (t, x, y, z), there is another inertial system (t′, x′, y′, z′)

with parallel spatial axes moving in the x direction at V , the Lorentz transforma-

tion, which is a coordinate transformation between these inertial systems, is given

by

x =
x′ + V t′√
1− V 2/c2

, y = y′, z = z′, t =
t′ + V x′/c2√
1− V 2/c2

. (8.1)

From this Lorentz transformation, we can see that the length of a rod moving at

the velocity V contracts by
√

1− V 2/c2 compared to when it is at rest (Lorentz

contraction) and that a clock in motion advances more slowly than a clock at rest.

39The explanation here is minimal. For more details, please refer to textbooks on special relativity
40This is shown by the above principle of relativity. If it is possible for an object to move faster than

the speed of light, it is also possible for it to move at the same speed as light, in which case light will not

propagate from the object’s point of view. This contradicts the principle of relativity, which requires the

speed of light to be constant.
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(b) World interval

In a four-dimensional space including the time axis, events are represented by points

(world points). indexworld point In addition, the movement of particles and the

propagation of light are represented by curves (world lines) in four-dimensional

space. A particle at rest in an inertial frame moves along a straight line parallel

to the time axis in four-dimensional space. The distance, s12, between two events

(t1, x1, y1, z1) and (t2, x2, y2, z2) in a four-dimensional space is called the world in-

terval and defined by

s12 =
√
c2(t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2 − (z2 − z1)2. (8.2)

The world interval ds between two adjacent events is given by41.

ds2 = c2dt2 − dx2 − dy2 − dz2. (8.3)

The world interval ds between two points on the world line of light gives ds = 0

by definition. If the world interval between two events vanishes in a certain inertial

frame, it also vanishes in any other inertial frame from the principle of the invariance

of the light speed. According to the principle of relativity, all inertial frames are

equivalent, so the world interval ds between two points must have the same value

in each inertial frame. The Lorentz transformation satisfies this requirement.

(c) Four-vectors and covariant form

It is convenient to write relativistic equations in terms of 4-vectors (or 4-tensors).

An equation expressed with 4-tensors is invariant to Lorentz transformations and

said to be covariant,

• Examples of 4-vectors

– The four-dimensional coordinate vector xi = (x0, x1, x2, x3) = (ct, x, y, z).

Generally, the component with index 0 is called the time component, and

the others are called the space components.

– The four-dimensional infinitesimal coordinate interval vector dxi = (cdt, dx, dy, dz).

– The charge current density 4-vector jie = (cρe, je). Its time component is

the flux density in the direction of the time axis.

– The electromagnetic 4-potential Ai = (ϕ/c,A) (SI units).

• World interval and metric tensor

The world interval ds is invariant in the Lorentz transformation and is a scalar.

It is written in the covariant form

ds2 = gikdx
idxk, (8.4)

41In another style, the world interval ds2 is defined with the opposite sign as ds2 = −c2dt2 + dx2 +

dy2 + dz2.
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where gik is the metric tensor. The indices i and k are summed from 0 to 3,

respectively. In a Cartesian coordinate system, the components of the metric

tensor gik is zero except for the diagonal ones, which are given by

g00 = 1, gαα = −1 (α = 1, 2, 3). (8.5)

• Contravariant and covariant components

There are two types of 4-vectors, covariant and contravariant components. The

covariant component is expressed as Ai, and the contravariant component is

expressed as Ai, distinguishing between the upper and lower indices. The

above examples of the 4-vectors are contravariant components. An example of

a covariant component is the four-dimensional gradient dϕ/dxi of a scalar ϕ. (A

scalar is an invariant quantity in Lorentz transformations.) The contravariant

and covariant components are related to each other via the metric tensor as

Ai = gikA
k, Ai = gikAk, (8.6)

where gik is the covariant component of the metric tensor and gik is the con-

travariant one. Generally, these two components of the metric tensor are inverse

matrices of each other, and they are equal in Cartesian coordinate systems. As

shown in the above equation, the metric tensor moves the indices up and down.

As in Eq. (8.4), for the index k repeated twice, the sum from 0 to 3 is taken,

and this sum is called a reduction. Reductions are always taken for a pair of

the indices of the covariant and contravariant components.

• Lorentz transformation of 4-vectors

The Lorentz transformation of contravariant components of a 4-vector is the

same as that of the four-dimensional coordinates of Eq. (8.1) and is given by

A0 = γ(A′0+V A′1/c), A1 = γ(A′1+V A′0/c), A2 = A′2, A3 = A′3, (8.7)

where γ = 1/
√

1− V 2/c2 is the Lorentz factor. On the other hand, a covariant

component is transformed as42.

A0 = γ(A′
0 − V A′

1/c), A1 = γ(A′
1 − V A′

0/c), A2 = A′
2, A3 = A′

3 (8.8)

The reduced product of a covariant vector and a contravariant vector (scalar

product) AiB
i is invariant to Lorentz transformations, and is a scalar.

(d) Four-velocity

The contravariant component ui of the four-dimensional velocity vector (4-velocity)

42Generally, between two inertial frames moving in arbitrary directions relative to each other, the

transformations are written as Ai = (∂xi/∂x′k)A′k and Ai = (∂x′k/∂xi)A′
k, These expressions of the

vector transformation can also be used for arbitrary coordinate transformations in the general theory of

relativity.
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is defined by43

ui =
dxi

ds
. (8.9)

By the definition of the world interval ds, the square of the 4-velocity gives uiu
i = 1.

Thus, the 4-velocity is a unit vector tangent to the world line. The Lorentz factor

between the laboratory system and the local system moving with the fluid is given

by γ = 1/
√

1− v2/c2, where v =
√
v2α. Using this Lorenz factor and Eq. (8.3), we

have ds = cdt/γ, and the relation between the 4-velocity and the three-dimensional

velocity vα is written as 44

u0 = γ, uα = vαγ/c (α = 1, 2, 3). (8.10)

The 4-momentum of a particle with the rest mass m0 and the velocity vα is given

by m0cu
i. The time component of the 4-momentum is equal to 1/c times the energy

of the particle (including its rest mass energy), and the space component is its

momentum. The Lorentz factor γ included in ui indicates an increase in the inertial

mass.

8.2 Equation of continuity

In the theory of relativity, the mass of a particle depends on its velocity and is not

invariant. Therefore, we write down the conservation of the number of particles that

make up the fluid as an equation of continuity45. In Newtonian mechanics, the 3D particle

number flux density is given by j = nv, where n is the particle number density. As a

natural extension, the 4-vector of the particle number flux density ji in the theory of

relativity is defined by

ji = nui. (8.11)

In the theory of relativity, the number density n (the particle number per unit volume) is

defined using the unit volume in a local inertial frame where the fluid is at rest. Consider

a fluid particle having a unit volume in the fluid rest frame. In the laboratory system

where the fluid particle moves with the velocity v, this fluid particle has a volume of

1/γ =
√
1− v2/c2 due to the Lorentz contraction. Thus, the number density in the

laboratory system is larger by γ than that in the fluid rest frame. Although the number

density varies for each inertial frame, the number density n is a scalar due to the definition

of the unit volume in the fluid rest frame.

The time component of the 4-vector of the number flux density is j0 = nγ from

Eq (8.10), which equals the number density in the laboratory system46. Similarly, the

43In another style, the 4-velocity is defined by dxi/dτ , where the proper time τ along the world line is

defined by dτ = ds/c.
44In special relativity, all three-dimensional vectors have a lower index, and the indices are written in

Greek letters in our style.
45At high temperatures, particles and antiparticles are created by pair creation, and pair annihilation

also occurs, so the total number of particles is not invariant. Therefore, the more general equation of

continuity uses the difference in the number between particles and antiparticles, which does not change

due to the pair creation or pair annihilation.
46It can also be considered to be 1/c times the number flux density in the direction of the x0 axis.
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space component is jα = nγvα/c, which equals 1/c times the 3D particle number flux

density in the laboratory system.

In relativistic fluid dynamics, the equation of continuity for the number density is

written down as47
∂(nui)

∂xi
= 0. (8.12)

This is expressed in the three-dimensional form

∂(nγ)

∂t
+

∂(nγvα)

∂xα

= 0. (8.13)

Since the number density in the laboratory system is nγ, the obtained equation of conti-

nuity (8.13) is the same as that in Newtonian mechanics.

8.3 Energy-momentum tensor of ideal fluid

As we saw in Chapter 1, the equation of motion and the energy equation of fluid mechan-

ics correspond to the conservation of momentum and energy, respectively. The equation

of energy conservation (or momentum conservation) is expressed in terms of the energy

density (or momentum density) and its flux density. Therefore, once we obtain these ex-

pressions in the theory of relativity, we can readily write down the conservation equation.

In this section, we derive such relativistic expressions for ideal fluids.

In the theory of relativity, the energy density, momentum density, and their flux den-

sities are the components of the four-dimensional energy-momentum tensor T ik. The

component T 00 is the energy density. A vector, T α0 (α =1,2,3), corresponds to c times

the 3D momentum density48. A vector of T 0α is 1/c times the energy flux density, and

the tensor of T αβ is the momentum flux density49. The energy-momentum tensor Tik is

symmetric.

Let us first find the energy-momentum tensor of an ideal fluid for the inertial frame of

reference in which the fluid is at rest. For a fluid at rest, the momentum density and the

energy flux density vanish (see Eq. [1.37]). The momentum flux density tensor is diagonal,

and each diagonal component is given by the pressure p (see Eq. [1.19]). Therefore, the

energy-momentum tensor of an ideal fluid at rest is

T ik =


e 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 . (8.14)

Note that the internal energy per unit volume e also includes the rest mass energy.

47The vanishing of the 4-divergence of the number flux density ji indicates that, for any 4-dimensional

volume, the number of the particle’s world lines that enter the volume equals the number of the lines

that exit outward.
48These energy and momentum densities are defined in the laboratory system.
49Since the components T i0 can be regarded as the flux densities of the energy and momentum in the

direction of the x0 axis, we can say that T ik is the 4-tensor of the energy-momentum flux densities.
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The general expression for the energy-momentum tensor of an ideal fluid in arbitrary

inertial frames is also easy to find. The general expression of Tik has a quadratic term

of the 4-velocity ui. And, it must be equal to Eq. (8.14) for the fluid rest frame, where

u0 = 1 and uα = 0. Therefore, the general expression for the energy-momentum tensor of

an ideal fluid is given by

T ik = huiuk − pgik, (8.15)

where h = e + p is the enthalpy per unit volume50. Using Eq. (8.10), each component of

Tik is expressed with the 3D velocity vα as51.

T 00 = hγ2 − p, T α0 = T 0α = hγ2vα/c, T αβ = hγ2vαvβ/c
2 + pδαβ. (8.16)

We also check that Tij is consistent with Newtonian fluid mechanics in the non-

relativistic limit (v ≪ c). The density ρnr in Newtonian mechanics is equal to m0nγ,

where m0 is the rest mass of the particles, and nγ is the number density in the labora-

tory frame. The internal energy enr in non-relativistic Newtonian mechanics is related

to the relativistic internal energy e as eγ = ρnrc
2 + enr. Since the Lorentz factor in the

non-relativistic limit is given by γ = 1 + 1
2
v2/c2, we have hγ2 = ρnrc

2 + 1
2
ρnrv

2 + enr + p.

Thus, leaving the terms of up to 1/c in Eq. (8.16), we obtain the approximate expression

of Tik in the non-relativistic limit as

T 00 = ρnrc
2 +

1

2
ρnrv

2 + enr, T α0 = T 0α = (ρnrc
2 +

1

2
ρnrv

2 + enr + p)vα/c,

T αβ = ρnrvαvβ + pδαβ.

(8.17)

The tensor T αβ is equal to the Newtonian momentum flux density of Eq. (1.19). Since T 00

includes the rest-mass energy, we can see that T 00 is also consistent with the Newtonian

energy density.

The vector T α0 (= T 0α) is equal to c times the Newtonian momentum density with

accuracy up to the c1 term. T α0 is also the energy flux density. Noting that T α0 includes

the advection term due to the rest mass energy, we see that the other terms equals 1/c

times the Newtonian energy flux density (see Eq. [1.37]).

8.4 Hydrodynamic equations in special relativity

In special relativity, the conservation equations for the energy and momentum are ex-

pressed with 4-divergence as

∂T k
i

∂xk
=

∂(huiu
k)

∂xk
− ∂p

∂xi
= 0, (8.18)

50We recall again that the theory of relativity defines all thermodynamic quantities (n, e, h, p, and

volume) in the fluid rest frame.
51Equation (8.16) can be derived by the Lorentz transformation of T ik in the fluid rest frame of

Eq. (8.14). The transformation formula for a tensor can be derived from that of the tensor product of

vectors.
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where T k
i is the mixed component of the energy-momentum tensor given by T k

i = gilT
lk.

The time component of Eq. (8.18) is the equation of energy conservation, and the space

components are the equations of momentum conservation. Using Eq. (8.16), we obtain

the three-dimensional form of the equation of energy conservation as

∂(hγ2 − p)

∂t
+

∂(hγ2vα)

∂xα

= 0, (8.19)

and the 3D form of the equation of momentum conservation is written as

∂(hγ2vα)

∂t
+

∂(hγ2vαvβ + c2pδαβ)

∂xβ

= 0. (8.20)

These conservation equations and the equation of continuity (8.13) are basic equations of

special relativistic hydrodynamics. The number of the equations is five, which agree with

the number of the independent variables (i.e., three components of the velocity and two

independent thermodynamic quantities).

We also describe the equations derived from these basic equations of Eqs. (8.18) and

(8.13). Taking the scalar product of ui and Eq. (8.18) and noting that uiu
i = 1 and

ui∂u
i/∂xk = 0, we have

∂(huk)

∂xk
− uk ∂p

∂xk
= 0. (8.21)

Using huk = nuk(h/n) and Eq. (8.12), we can rewrite Eq. (8.21) as

nuk

[
∂(h/n)

∂xk
− 1

n

∂p

∂xk

]
= 0. (8.22)

Furthermore, using the thermodynamic relation for the entropy σ per unit volume, Td(σ/n) =

d(h/n)− (1/n)dp, we have

uk ∂(σ/n)

∂xk
=

σ/n)

ds
= 0. (8.23)

This is the adiabatic condition in special relativity, showing that the entropy per particle

is invariant along the world line of the flow52.

Next, consider the component perpendicular to ui of Eq. (8.18). It is given by

∂T k
i

∂xk
− uiu

l∂T
k
l

∂xk
= 0. (8.24)

Transforming this using Eqs. (8.18) and (8.21), we obtain Euler’s equation in special

relativity as

huk ∂ui

∂xk
=

∂p

∂xi
− uiu

k ∂p

∂xk
. (8.25)

We also derive the equation for steady flows. In this case, since the time derivative

vanishes in Eqs. (8.13) and (8.19), we find that the particle number flux and energy flux

across the cross-section of the flow tube are constant, respectively. That is,

nγvα dSα = constant, hγ2vα dSα = constant, (8.26)

52From this adiabatic condition and the equation of continuity (8.12), we also obtain the equation of

entropy conservation as ∂(σuk)/∂xk = 0.
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where dSα is the cross-section vector of the flow tube. Since the ratio of these fluxes is

also invariant, we have

hγ/n = constant. (8.27)

This is Bernoulli’s equation in special relativistic hydrodynamics.

8.5 Hydrodynamic equations in general relativity

8.5.1 Covariant form of the hydrodynamic equations

When we study fluid motion in a gravitational field strong enough to alter a flow with

a velocity comparable to the speed of light, the general theory of relativity is necessary.

General relativity is constructed based on the equivalence principle, which states that

gravity and inertial force are equivalent. Thus, the gravitational field is due to an ac-

celerated motion as well as the inertial force and is described by the metric tensor gik
of spacetime. The metric tensor of the spacetime distorted by “gravitational sources” is

governed by the Einstein equation. Generally, the metric tensor gik has non-zero, non-

diagonal components, and its components depend on the four-dimensional coordinates.

In this section, we consider the case where the metric tensor is a given one and derive

hydrodynamic equations in the general theory of relativity. When the metric tensor gik
is given, the hydrodynamic equations are easy to find. In fact, by using a given gik, the

covariant equations expressed with 4-tensors derived in the previous section can be used

with only a minor change. The changes concern the derivative of vectors and tensors.

In the curvilinear coordinate system used in general relativity, the covariant derivative

is used to differentiate vectors and tensors. The covariant derivative of a vector Ai (or

Ai) for a coordinate xk is denoted by Ai;k (or Ai
;k), and defined by

Ai;k =
∂Ai

∂xk
− Γl

ikAl, Ai
;k =

∂Ai

∂xk
+ Γi

lkA
l, (8.28)

where Γl
ik is the Christoffel symbol, which is given by53.

Γl
ik =

1

2
glm
(
∂gmi

∂xk
+

∂gmk

∂xi
− ∂gik

∂xm

)
. (8.29)

Generally, in the covariant derivative of a tensor, terms of the Christoffel symbol are

added for each index. For example, the covariant derivative of the mixed component T i
j

is given by

T i
j;k =

∂T i
j

∂xk
− Γl

jkT
i
l + Γi

lkT
l
j . (8.30)

The covariant derivative of a scalar does not include the Christoffel symbol term. Thus,

it is the same as the conventional derivative. Using the covariant derivative instead of the

conventional derivative, we can extend the equations to the covariant equations applicable

53Geometrically, the Christoffel symbol gives the changes in each component of vectors when they are

made a parallel transport. A differential is the difference between two different points. To make it the

difference at the same point, one of them must be made a parallel transport to the other point.
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to general relativity. That is, the equation of continuity (8.12), the conservation equations

of energy and momentum (8.18), and Euler’s equation (8.25) are extended as

(nui);i = 0, T k
i;k = 0, hukui;k =

∂p

∂xi
− uiu

k ∂p

∂xk
. (8.31)

In general relativity, the Christoffel symbol term included in the covariant derivative

represents the effect of gravity. There is no change in the adiabatic condition (8.23) since

it has the derivative of the scalar σ/n54.

8.5.2 Hydrostatic equilibrium of a spherically symmetric object

The relativistic hydrostatic equation for a spherically symmetric self-gravitational object

is obtained from Euler’s equation (8.31). In the frame of reference where the object is at

rest, we have uα = 0, u0 = 1/
√
g00. Furthermore, if we consider only the self-gravity of

the static object, we obtain g0α = 0, uα = 0, and u0u0 = 1.

Such a static object can be considered to be spherically symmetric55. Then, the r

component of the Euler equation (8.31) is given by

−hu0Γ0
r0u0 =

∂p

∂r
. (8.32)

Furthermore, from Eq. (8.29), we obtain Γ0
r0 = 1

2
g00dg00/dr for a static and spherically

symmetric gravitational field, and thus we have

1

h

dp

dr
= −1

2

d ln g00
dr

. (8.33)

(ASIDE) Derivation of the TOV equation

By determining dg00/dr from the Einstein equation, we can derive the Tolman–Oppenheimer–

Volkoff equation (TOV equation). For a spherically symmetric, static gravitational field,

the world interval ds is given by

ds2 = g00(r) c
2dt2 + grr(r) dr

2 − r2(dθ2 + sin2 θdϕ2). (8.34)

The 00-component of the Einstein equation given by Ri
k − 1

2
Rl

lδ
i
k = 8πGT i

k/c
4 is written

down as (see §8.8 for the derivation)

1

r2
d

dr

(
r

grr

)
+

1

r2
=

8πGe

c4
. (8.35)

This is the differential equation for grr. Solving it, we have

grr = −
(
1− 2GM(r)

c2r

)−1

, (8.36)

54In Newtonian mechanics, the adiabatic condition is not affected by the presence or absence of gravity.
55If the distributions of temperature and composition are spherically symmetric, the distributions of

density and pressure should also be spherically symmetric.
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where M(r) is the mass inside r defined by Eq. (3.5), and the relativistic relation ρ = e/c2

is used. The rr-component of the Einstein equation is given by (see §8.8)

1

r2grr

(
r
d ln g00
dr

+ 1

)
+

1

r2
= −8πGp

c4
. (8.37)

Solving this for d ln g00/dr and using Eqs. (8.33) and (8.36), we finally obtain the TOV

equation (4.37).

8.5.3 Hydrodynamic equations in a static and spherically symmetric gravi-

tational field

Equation (8.31) is the covariant form of hydrodynamic equations, which are expressed

with 4-vectors. To write down these equations with three-dimensional vectors, we extend

Eq. (8.10) to the general relativistic equation. For simplicity, we will consider fluid motion

in a static and spherically symmetric gravitational field (∂gik/∂x
0 = 0, g0α = 0) below.

In a static gravitational field, it is natural to define the three-dimensional velocity using

the characteristic time at each position, dτ =
√
g00dx

0/c, as56

vα =
dxα

dτ
=

c
√
g00

dxα

dx0
. (8.38)

This is the contravariant component. The covariant component of the three-dimensional

velocity is defined by vα = −gαβv
β57. Using the Lorentz factor defined by γ =

√
1− vαvα/c2,

Eq. (8.4) is rewritten as ds = cdτ/γ. Therefore, the relation between the 4-velocity and

the 3D velocity of Eq. (8.38) is obtained as

u0 = γ/
√
g00, uα = vαγ/c. (8.39)

Using this relation, each component of the energy-momentum tensor T ik (8.15) is ex-

pressed in the three-dimensional velocity

T 00 =
hγ2 − p

g00
, T α0 = T 0α =

hγ2vα

c
√
g00

, T αβ = hγ2vαvβ/c2 − pgαβ, (8.40)

where g00g00 = 1 is used, which is valid in the static and spherically symmetric gravita-

tional field. The mixed components are given by

T 0
0 = hγ2 − p, T α

0 =
√
g00 hγ

2vα/c, T β
α = −hγ2vαv

β/c2 − pδβα. (8.41)

Generally, the 4-divergence of a vector or tensor is obtained from Eqs. (8.28)-(8.30) as

Ai
;i =

1√
−g

∂(
√
−gAi)

∂xi
, Ak

i;k =
1√
−g

∂(
√
−gAk

i )

∂xk
− 1

2

∂gkl
∂xi

Akl, (8.42)

56Note that this characteristic time is different from the characteristic time of the fluid-rest frame.
57In special relativity without the gravitational field, we can always use the Cartesian linear coordinate

system with gαα = −1. Then, we have vα = vα, that is, the covariant and contravariant components are

equal to each other
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where g is the determinant of the metric tensor gik. By rewriting the equation of continuity

and the equation of motion in Eq. (8.31) with Eqs. (8.39)-(8.42), we can obtain the three-

dimensional form of the hydrodynamic equations in a static and spherically symmetric

gravitational field.

Let us also derive the general relativistic Bernoulli’s equation for a static and spher-

ically symmetric gravitational field. Similarly to the previous section, from the three-

dimensional forms of the equation of continuity and the equation of energy conservation,

we obtain the equations of constant particle number flux and energy flux across each cross

section of a flow tube. From the ratio of these fluxes, we obtain

√
g00 hγ/n = constant. (8.43)

In the limit of a weak gravitational field, we obtain the relation between g00 and the

Newtonian gravitational potential ϕg as58

g00 = 1 + 2ϕg/c
2 (8.44)

Substituting Eq. (8.44) into (8.43) and taking the non-relativistic limit of it, we obtain

the Newtonian Bernoulli’s equation (1.32) in a gravitational field.

Problem 45. Derive Eq. (8.42) from Eqs. (8.28)-(8.30). Also use the facts that the

determinant g is negative and that its differential is given by dg = ggikdgik.

Problem 46. Derive general relativistic Bernoulli’s equation (8.43) for a static and

spherically symmetric gravitational field according to the above explanation. Also check

that Eq. (8.43) is reduced to Newtonian Bernoulli’s equation (1.32) in the non-relativistic

limit.

8.6 Relativistic sound waves and shock waves

First, we consider sound waves in a relativistic case. Similar to §2.1 , we consider small

perturbations in a uniform fluid in the fluid-rest frame. Here the ‘2elativistic” case means a

case where the pressure is extremely high and comparable to the internal energy including

the rest-mass energy. On the other hand, we can set as γ = 1 since the velocity is a small

perturbation. Leaving only the first-order terms of perturbations, we can obtain the

perturbation equations for those of the energy and momentum conservation (8.19) and

(8.20) as
∂e′

∂t
= −h divv′, h

∂v′

∂t
= −c2 grad p′, (8.45)

where the quantities with dash ′ represent the perturbations and the quantities without

dash are the unperturbed ones. Eliminating the velocity perturbations v′ from these

58In fact, substituting this relation into the general relativistic hydrostatic equation (8.33), we obtain

the Newtonian hydrostatic equation in §3.1.
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equations and using an adiabatic relation p′ = (∂p/∂e)s e
′, we obtain the wave equation

as ∂2e′/∂t2 = c2s △ e′. The relativistic expression of the sound velocity is given by

cs = c

√(
∂p

∂e

)
s

. (8.46)

This is a natural extension from the Newtonian sound velocity since the mass density ρ

is replaced by e/c2 in the theory of relativity. In the ultra-relativistic limit (or in the

high-energy limit), we have cs = c/
√
3 since p = e/3 in this limit.

Next, we will discuss shock waves in the relativistic fluid dynamics. As in §2.3, we
use a (local) frame of reference in which the shock front is at rest59. The x-axis is set

perpendicular to the shock front, and the shock front is located at x = 0. Assume that

vx is positive and that there is no tangential velocity at the shock front. We label the

pre-shock region with x < 0 as 1 and the post-shock region with a positive x as 2. The

quantities in each region are represented by the subscripts 1 and 2.

As in the non-relativistic case, the particle number flux density jx = nux, the momen-

tum flux density T xx, and the energy flux density T x0 are continuous at the discontinuous

surface (x = 0). Using the three-dimensional expressions (8.10) and (8.16), these contin-

uous conditions for the shock wave are given by60

γ1v1/V1 = γ2v2/V2 ≡ j, (8.47)

h1γ
2
1 v

2
1 /c

2 + p1 = h2γ
2
2 v

2
2 /c

2 + p2, (8.48)

h1γ
2
1 v1 = h2γ

2
2 v2, (8.49)

where Vi = 1/ni the volume per particle in the fluid-rest frame and γi = 1/
√
1− v 2

i /c
2

is the Lorentz factor in the region i. Eliminating γivi from Eqs. (8.47) and (8.48), and

solving it for j, we obtain61

j2 =
p2 − p1

h1V 2
1 − h2V 2

2

c2. (8.50)

Furthermore, equations (8.47) and (8.49) yields

h 2
1 γ

2
1 V

2
1 = h 2

2 γ
2
2 V

2
2 . (8.51)

From j = γivi/Vi, we obtain another expression for the Lorentz factor as

γ 2
i = 1 + j2V 2

i /c2 (8.52)

59Furthermore, by using a local inertial frame, gravity can be eliminated locally. Note that the metric

tensor is continuous even at the shock front.
60We recall again that h and e used in this chapter are quantities per unit volume (of the fluid-rest

frame) although they are defined as quantities per unit mass in Chapter 2. Another difference from

Chapter 2 is that they include the rest-mass energy.
61Noting that hV = h/n ≃ m0c

2 in the non-relativistic limit and that j and V are the particle

number flux and the volume per particle, respectively, we find that Eq. (8.50) is equal to the Newtonian

relation (2.33) in this limit. Similarly, Eq. (8.54) is found to equal Eq. (2.35) in the non-relativistic limit.
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Eliminating the Lorentz factors in Eq. (8.51) using the expression (8.52), we obtain an-

other expression for j as

j2 =
h2
2V

2
2 − h2

1V
2
1

h2
1V

4
1 − h2

2V
4
2

c2. (8.53)

From the equivalence between this and Eq. (8.50), a relation between the thermodynamic

quantities is obtained as

p2 − p1 =
h 2
2V

2
2 − h 2

1V
2

1

h2V 2
2 + h1V 2

1

, or h1(e1 + p2)V
2
1 = h2(e2 + p1)V

2
2 . (8.54)

This corresponds to the non-relativistic relation (2.35). Expressing the enthalpy with p

and V in Eq. (8.54) using the equation of state, and solving it for p2, we can plot the curve

of the shock adiabat in the p-V plane. This relativistic shock adiabat is called Taub’s

adiabat and Eq. (8.54) is the equation of Taub’s adiabat.

The velocities in each region can also be expressed with thermodynamic quantities on

both sides. In fact, a simple transformation of Eqs. (8.48) and (8.49) yields62

v1
c

=

√
(p2 − p1)(e2 + p1)

(e2 − e1)(e1 + p2)
,

v2
c

=

√
(p2 − p1)(e1 + p2)

(e2 − e1)(e2 + p1)
. (8.55)

In the limit of a weak shock, both vi approach the sound velocity of Eq. (8.46) since

quantities on both sides are approximately equal. On the other hand, in the limit of a

strong shock where e2 ≫ e1, and when the ultrarelativistic equation of state, p2 = e2/3,

holds in the post-shock region, v1 approaches c and v2 approaches c/3.

The relative velocity between both sides, v12 is obtained from the addition formula of

velocities and Eq. (8.55) as

v12 =
v1 − v2

1− v1v2/c2
= c

√
(p2 − p1)(e2 − e1)

(e2 + p1)(e1 + p2)
. (8.56)

In the ultra-relativistic strong shock limit described above, v12 also approaches c.

Problem 47. Derive Eqs. (8.52), (8.53), and (8.54).

Problem 48. Derive Eq. (8.55).

Problem 49. Show that, for the ultra-relativistic strong shock limit, quantities in the

post-shock region are given by63

γ2 =
√

9/8, γ2n2 = 3γ1n1, e2 = 3p2 = 3h2/4 = 2γ2
1h1. (8.57)

62For the derivations, it is useful to set the velocity and Lorentz factor on both sides as vi/c = tanhϕi

and γi = coshϕi, respectively. Also, note the relation between the hyperbolic function cosh2 ϕi−sinh2 ϕi =

1. Similarly, the expression for γi can be easily obtained.
63In the non-relativistic strong shock limit, the number density ratio n2/n1 has a upper limit. On the

other hand, in the ultra-relativistic strong shock limit, the ratio n2/n1 is proportional to γ1 and increases

infinitely.
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Problem 50. Show that the Lorentz factor corresponding to the relative velocity between

the both sides, γ12 = 1/
√

1− v212/c
2, satisfies γ12 = γ1γ2(1− v1v2/c

2). (Firstly, show that

ϕ12 ≡ tanh−1(v12/c) = ϕ1 − ϕ2.) Also, show that γ12 = γ1/
√
2 for the ultra-relativistic

strong shock limit.

8.7 Ultra-relativistic blast waves

In §5.3, we derived Sedov’s solution, which is a non-relativistic solution to the blast wave.

However, when the explosion has a quite high energy and the propagation speed of the

blast wave is comparable to the speed of light, the relativistic fluid dynamics must be used.

In this section, we will consider an ultra-relativistic blast wave where the propagation

speed of the blast wave is extremely close to the speed of light and its Lorentz factor is

large. The solution for an ultra-relativistic blast wave is known as the Blandford-McKee

solution. The solution of ultrarelativistic blast waves helps us to understand a shock

wave generated by the collision of a relativistic jet from black holes with the interstellar

medium.

As in the non-relativistic Sedov’s solution, we consider a spherical shock wave propa-

gating in a homogeneous medium at rest and an adiabatic flow inside the shock. In an

ultra-relativistic blast wave, the propagation speed of the shock wave is approximately

the speed of light c64. Therefore, the radius R of the spherical shock is given by ct. The

propagation velocity is equal to the relative velocity between the shock and the outer

medium denoted by v1 in the previous section, and the corresponding Lorentz factor is

given by γ1, which is much larger than unity.

We fist estimate the number density n2 just inside the shock. Let h1 be the enthalpy

per unit volume of the outer medium, and let n1 be the number density of the medium.

Although the thermodynamic quantities at the post-shock are given by Eq. (8.57), it

should be noted that those are defined in the frame of reference where the shock is at

rest. The number density on the post-shock side, n′
2 in the frame where the medium is at

rest is given by

n′
2 = γ12n2 = 2γ2

1n1, (8.58)

where γ12 is the Lorentz factor corresponding to the relative velocity v12. Since this

equation shows that n2 ≫ n1, we find that for an ultra-relativistic blast wave, the gas is

concentrated within an extremely thin spherical shell just inside of the shock.

Assuming the uniform number density distribution over the shell volume 4πR2∆R, the

shell thickness ∆R can be estimated as

∆R ≃ n1

3n′
2

R =
R

6γ2
1

. (8.59)

As the blast wave propagates through the medium, the Lorentz factor γ1 gradually de-

creases. Let us examine time evolution of γ1. The energy density T00 in the spherical

64In general, for relativistic blast waves, the hydrodynamic equations also includes the speed of light,

so there are two independent dimensionless variables in this problem. Therefore, the dimensional analysis

done for Sedov’s solution is not applicable. However, for ultra-relativistic blast waves, the Lorentz factor

γ1 is the only one dimensionless variable and thus a self-similar solution exists.
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shell is estimated as h2γ
2
12 from Eq. (8.16). Multiplying this by the volume of the shell

and using Eq. (8.57), the total energy of the blast wave is estimated to be 8πR3h1γ
2
1/9.

Since this is equal to the explosion energy E, we obtain time evolution of γ1 as

γ2
1 ≃ 9E

8πh1R3
=

9E

8πh1c3t3
. (8.60)

As the Lorentz factor γ1 of decreases, the pressure, number density, energy density of

the shell all decrease, and the relative thickness ∆R/R of the shell increases. Exactly

speaking, it is an overestimate to assume that the (average) energy density in the shell is

equal to the post-shock value. In a more accurate estimate, γ2
1 is about twice of Eq. (8.60)

(Blandford & McKee 1976).

8.8 Appendix: Christoffel symbol and Ricci tensor in a static

and spherically symmetric gravitational field

In this section, we derive the expressions for the Christoffel symbol and the Ricci tensor

with the metric tensor gik for a static and spherically symmetric gravitational field. The

metric tensor of a spherically symmetric coordinate system (x0, x1, x2, x3) = (ct, r, θ, ϕ) in

a spherically symmetric and static gravitational field is given by the diagonal matrix of

Eq. (8.34). The diagonal components, g00 and g11, are functions of only r(= x1) and the

other components are

g22 = 1/g22 = −r2, g33 = −r2 sin2 θ. (8.61)

The contravariant components are given by gii = 1/gii, where the summation over i is not

taken. Using the metric tensor, each component of the Christoffel symbol is calculated

from the definition of Eq. (8.29) as

Γ1
00 = − g′00

2g11
, Γ0

10 = Γ0
01 =

g′00
2g00

, Γ1
11 =

g′11
2g11

,

Γ1
22 =

r

g11
, Γ2

12 = Γ2
21 =

1

r
, Γ3

13 = Γ3
31 =

1

r
,

Γ1
33 =

r sin2 θ

g11
, Γ2

33 = − sin θ cos θ, Γ3
23 = Γ3

32 = cot θ,

(8.62)

where the dash ′ represents the derivative with respect to r. The other components of the

Christoffel symbol are zero.

The Ricci tensor is given by Rik = ∂Γl
ik/∂x

l−∂Γl
il/∂x

k+Γl
ikΓ

m
lm−Γm

il Γ
l
km, which are di-

agonal in the spherical symmetric and static gravitational field. The diagonal components
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of Rik is obtained as

R00 = − g′′00
2g11

+
g′00g

′
11

4g211
+

g′00
2

4g00g11
− g′00

rg11
,

R11 = − g′′00
2g00

+

(
g′00
2g200

)2

+
g′11
2g11

(
g′00
2g00

+
2

r

)
,

R22 =

(
r

g11

)′

+ 1 +
r

g11

(
g′00
2g00

+
g′11
2g11

)
,

R33 = R22 sin
2 θ.

(8.63)

The diagonal component Ri
i of the mixed component is given by Ri

i = gijRji, where the

summation over i is not taken. The scalar curvature R is the diagonal sum of the mixed

components of the Ricci tensor and obtained as

R = − g′′00
g00g11

+
g′00g

′
11

2g00g211
+

g′00
2

2g200g11
− 2g′00

rg00g11
− 2

r2

(
r

g11

)′

+
2

r2
. (8.64)

Using the mixed component Ri
k and the scalar curvature R, we can obtain the left-hand

sides of Einstein’s equations (8.35) and (8.37) for a spherically symmetric and static

gravitational field.
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