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1 Gravitational Contraction of Molecular Clouds and Jeans In-

stability

In view of the self-gravitational contraction of molecular clouds, we study the conditions for

the self-gravitational fragmentation of uniform gas (the gravitational instability of uniform gas).

This problem is called the Jeans instability.

1.1 Basic equations

We describe equations for self-gravitating fluids. Heat transfer, viscosity, rotation, and mag-

netic field are neglected.

• Equation of continuity
∂ρ

∂t
+∇ · (ρv) = 0. (1.1)

• Euler’s equation.
∂v

∂t
+ (v · ∇)v = −1

ρ
∇p−∇Φ. (1.2)

• Poisson’s equation
△Φ = 4πGρ. (1.3)

1.2 Linear perturbations and stability analysis

Consider a gas at rest with uniform density and pressure.

Assume that self-gravity does not work when the gas is uniform and isotropic1. (ρ0 = p0 =

const., v0 = Φ0 = 0.)

(a) Perturbations: ρ = ρ0 + ρ1, p = p0 + p1, v = v1, Φ = Φ1.

(b) Perturbation equations (The second-order terms of perturbations are neclected.)

• Eq. of continuity
∂ρ1
∂t

+ ρ0∇ · v1 = 0. (1.4)

• Euler’s eq.
∂v1

∂t
= − 1

ρ0
∇p1 −∇Φ1. (1.5)

• Poisson’s eq.
△Φ1 = 4πGρ1. (1.6)

• Eq. of state

p1 =

(
∂p

∂ρ

)
s

ρ1 = c2s ρ1. (1.7)

1This assumption of gravitational equilibrium in the unperturbed state is not correct. That is, the gravitational

equilibrium would not be reached without the pressure gradient and other effects that balance with gravity. This

flaw is referred to as“ the Jeans swindle.”Nevertheless, the results of the simple Jeans instability are useful for

understanding self-gravitational instabilities in real systems that are in equilibrium with other effects.
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(c) Linear solution

Substitution of Eq. (1.6) into [ ∂∂t Eq. (1.4) −ρ0∇· Eq. (1.5)] yields

∂2

∂t2
ρ1 − c2s△ρ1 − 4πGρ0ρ1 = 0. (1.8)

The solution of perturbations has a coordinate and time dependence of exp(ik · x− iωt).

Then, we obtain the dispersion relation as

ω2 = c2sk
2 − 4πGρ0. (1.9)

If ω is imaginary (or complex), the perturbations grow. That is, if

k < kJ ≡
√
4πGρ0
cs

−→ unstable (1.10)

• Jeans length λJ =
2π

kJ
=

√
πc2s
Gρ0

(contraction time
λJ

cs
∼ 1√

Gρ0
)

• Jeans mass MJ ≃ 4π

3
ρ0(λJ/2)

3

1.3 Application to contraction of molecular clouds

Molecular Clouds (ex. Orion[1500 lyr], Taurus[450 lyr])

Number density of hydrogen atoms ∼ 100-104cm−3, ρ ∼ 10−22-10−21g cm−3.

Size ∼ 10− 103lyr.

Mass ∼ 104-107 M⊙ (M⊙ = 2× 1033g).

Temperature ∼ 10-30K (sound velocity ∼ 200-300m/s).

• Jeans length λJ ∼ 1019cm ∼10lyr.

• Jeans mass MJ ∼several 10M⊙

• Density dependence of Jeans instability

λJ, MJ ∝ ρ−1/2 (isothermal)

The denser the region, the more short-wavelength modes it has, and the more it splits

into smaller mass objects.

2 Structures of protoplanetary disks and their self-gravitational

instability

Protoplanetary disks form around stars as a byproduct of star formation and are the birthplace

of planets.

• Accretion disks

• Passive disks (heated by irradiation from thier central stars）（↔ active disks)

We study local self-gravitational stability of gas disks.
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2.1 Basic equations in a cylindrical coordinate system

Surface density Σ =

∫ ∞

−∞
ρdz, two-dimensional pressure P =

∫ ∞

−∞
pdz;

Velocity vz = 0, ∂v/∂z ∼ 0

• Eq. of continuity
∂Σ

∂t
+

1

R

∂

∂R
(RΣvR) +

1

R

∂

∂ϕ
(Σvϕ) = 0 (2.1)

• Euler’s eq.

∂vR
∂t

+ vR
∂vR
∂R

+
vϕ
R

∂vR
∂ϕ

−
v2ϕ
R

= − 1

Σ

∂P

∂R
− GM⊙

R2
− ∂ΦD

∂R
(2.2)

∂vϕ
∂t

+ vR
∂vϕ
∂R

+
vϕ
R

∂vϕ
∂ϕ

+
vRvϕ
R

= − 1

RΣ

∂P

∂ϕ
− 1

R

∂ΦD

∂ϕ
(2.3)

• Poisson’s eq.

△ΦD = 4πGΣδ(z) (2.4)

2.2 Vertical hydrostatic structure of gas disks

• For a thin disk, the z-component (vertical component) of Euler’s equation is written by

1

ρ

∂p

∂z
= −Ω′ 2z, (2.5)

where the angular frequency, Ω′, of vertical oscilation is given by

Ω′ 2 =
GMc

R3
+

∂2ΦD

∂z2
(z = 0). (2.6)

If the disk gravity is negligible, Ω′ is equal to the Keplerian angular velocity (GMc/r
3)1/2.

• The vertical density profile of the disk can be obtained by solving the vertical hydrostatic

equation (2.5). For vertically isothermal cases, we have

ρ(z) =
Σ√
2πh

e−z2/2h2
. (2.7)

The vertical disk scale height h is given by

h =
cs
Ω′ , (2.8)

where cs is the isothermal sound velocity with γ = 1. For polytropic disks, we obtain

ρ(z) = ρ(0)

(
1− (γ − 1)z2

2h2

)1/(γ−1)

. (2.9)

In this case, h is also given by Eq. (2.8), but cs in it is evaluated at z = 0.
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2.3 Gravitational instability of disks

(a) Perturbations: Σ = Σ0 +Σ1, P = P0 + P1, P1 = c2sΣ1;

vR = vR,1, vϕ = RΩ(R) + vϕ,1; ΦD = ΦD,0 +ΦD,1

From the balance among the centrifugal force, the gravitational forces by the central star

and the disk, and the pressure gradient, the angular velocity, Ω, of the unperturbed disk

rotation is obtained as

Ω2 =
GMc

R3
+

1

R

∂ΦD,0

∂R
(z = 0) +

1

R

∂H0

∂R
, (2.10)

where H0 = γ′

γ′−1P0/Σ0 is the unperturbed enthalpy. The angular velocity Ω generally

has a radial dependence. In the Keplerian rotation, Ω ∝ r−3/2 while Ω ∝ 1/r for galactic

disk. A rotation in which Ω depends on r is called a differential rotation, and a rotation

in which Ω is independent of r is called a rigid rotation.

(b) WKB approximation for perturbations

∂

∂R
≫ 1

R

∂

∂ϕ
,
1

R
; perturbations ∝ exp(ikR+ imϕ− iωt)

(c) Vertical integration of Poisson’s equation

Under the WKB approximation, the perturbation equation of Poisson’s equation (2.4) is

written as (
∂2

∂r2
+

∂2

∂z2

)
ΦD,1 = 4πGΣ1δ(z). (2.11)

Integrating this equation from z = −ϵ to +ϵ (ϵ ≪ 1), and assuming vertical symmetric

disks, we obtain (
∂ΦD,1

∂z

)
z=+0

= −
(
∂ΦD,1

∂z

)
z=−0

= 2πGΣ1. (2.12)

Furthermore, since Eq. (2.11) is given by

(
∂2

∂r2
+

∂2

∂z2

)
ΦD,1 = 0 for z ̸= 0, we have

ΦD,1 ∝ e−k|z| exp(ikr + imϕ− iωt). (2.13)

From Eqs. (2.12) and (2.13), we obtain

ΦD,1(z = 0) = −2πGΣ1/k. (2.14)

(d) Other perturbation equations and a dispersion relation

• Eq. of continuity

i(mΩ− ω)Σ1 + ikΣ0vR,1 +
imΣ0

R
vϕ,1 = 0. (2.15)

• Euler’s eq.(
i(mΩ− ω) −2Ω

−2B i(mΩ− ω)

)(
vR,1

vϕ,1

)
= (c2sΣ1/Σ0 +ΦD,1)

(
−ik

−im/R

)
. (2.16)

5



Solving this yields(
vR,1

vϕ,1

)
=

c2sΣ1/Σ0 +ΦD,1

∆

(
(mΩ− ω)k

−i2Bk

)
, (2.17)

where2 
B = − 1

2R

d(R2Ω)

dR
(Oort’s B constant),

κ2 = −4BΩ (epicycle 振動数),

∆ = κ2 − (mΩ− ω)2.

(2.18)

Substituting Eqs. (2.14) and (2.17) into (2.15), we have

i(mΩ− ω)

(
1 +

c2sk
2 − 2πGΣ0k

∆

)
Σ1 = 0. (2.19)

Therefore, we obtain the dispersion relation

(mΩ− ω)2 = c2sk
2 − 2πGΣ0k + κ2. (2.20)

(e) Stability condition

If the frequency ω is real, the perturbation is stable. For real ω, the right-hand side of

the dispersion relation must be positive for all k. That is, the stability condition is that

“κ2 > 0 ” and “the discriminant for the right-hand side = 0 is negative” hold. The former

requires that the specific angular momentum l (= r2Ω) increases with r. It is called the

Rayleigh’s stability condition for rotating disks. From the latter, we obtain Toomre’s

stability condition

Q ≡ csκ

πGΣ
> 1, (2.21)

where Q is called Toomre’s Q value. The critical wavelength with Q = 1 is given by

λcrit = 2π/kcrit = 2πcs/κ.

Since three frequencies κ,Ω,Ω′ are comparable, the critical wavelength is comparable with

the disk scale height h. Therefore, Toomre’s stability condition may change somewhat

due to the effect of the disk thickness. According to the results of a self-gravitational

stability analysis for a three-dimensional disk considering the disk thickness, the threshold

of Toomre’s stability condition (2.21) is estimated to decrease by about 30% (Goldreich

& Linden-Bell 1965). However, it is known that the non-axisymmetric perturbation with

m = 2, which was ignored in the above WKB approximation, becomes unstable and is

excited even at Q ≃ 2 (Vauterin & Dejonghe 1996).

(f) Derivation of Rayleigh condition based on particle description

We can derive Rayleigh stability condition, dR2Ω/dR > 0, for disk rotation based on

particle description. The energy of an unit-mass particle moving the central force field Φ

is given by

E =
1

2
Ṙ2 +

1

2
R2Ω2 +Φ, (2.22)

2In Keplerian disks B = −Ω/4，whereas B = −Ω in rigidly rotating disks. For rigidly rotating disks, the term

−2BvR,1 in the ϕ component of Eq. (2.16) is equal to the ϕ component of the Coriolis force.
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where Ω = θ̇. The particle model in Eq. (2.22) can be used to approximate the dynamics

of a gas disk rotating at Ω, considering this particle as a single fluid particle.

Let us review the motion of a particle in a central force field. For a particle with the

specific angular momentum j0 = R2
0Ω(R0), Eq. (2.22) can be written as

E =
1

2
Ṙ2 + Ueff(R), (2.23)

where the effective potential Ueff(R) is given by

Ueff(R) = Φ(R) +
j20
2R2

. (2.24)

The balance between the central gravity and the centrifugal force on the particle at R = R0

is written as

−dUeff

dR
= −dΦ

dR
+

j20
R3

= 0 (forR = R0). (2.25)

We further consider the radial motion of this particle. Differentiating Eq. (2.23) with r,

the radial component of the equation of motion is obtained as

R̈ = −dUeff

dR
= −d2Ueff

dR2
(R−R0). (2.26)

In the second equality, we did a Taylor expansion R = R0 and used Eq. (2.25). When

d2Ueff/dR
2 > 0 (i.e., Ueff has a minimum), the solution of Eq. (2.26) is a simple harmonic

oscillation around R = R0, and the circular motion of the particle is stable against radial

perturbations. Conversely, the case with a negative d2Ueff/dR
2 is unstable.

This stability condition can be also expressed in terms of the angular velocity Ω. Noting

that dΦ/dR = RΩ2 holds at each radius from Eq. (2.25) and differentiating Eq. (2.25), we

obtain
d2Ueff

dR2
=

dRΩ2

dR
+ 3Ω2 =

2Ω

R

dR2Ω

dR
= κ2. (2.27)

Consequently, the stable condition d2Ueff/dR
2 > 0 is equivalent to the Rayleigh condition

dR2Ω/dR > 0. We also find that the epicycle frequency κ is the angular frequency of the

radial oscilation.

2.4 Hayashi model for the solar nebular disk and its self-gravitational stabil-

ity

The Hayashi disk model (or the minimum-mass solar nebula disk) is a standard model of a

protoplanetary disk for the formation of the solar system planets.

• Disk temperature (in a thin passive disk without heating sources)

The gas temperature is equal to the dust temperature which is determined by the balance

between the heating by the solar radiation and the cooling by the thermal emission from

dust grains. For a dust grain with a radius d, this energy balance is written as

7



1 10 100
0.1

1

10

100

1000

1 10 100

0.1

1

10

100

su
rf

ac
e 

de
ns

ity
  (

g 
cm

-2
)

R   (AU)

sn
o

w
 li

n
e

gas

dust

R   (AU)

in
te

gr
at

ed
 m

as
s 

 (
M

ea
rt

h)

dust

planets

Me

V

E

Ma

J
S

U N

Figure 1: Distributions of Gas and dust surface densities in the Hayashi model (upper panel).

The vertical dashed line indicates the location of the snow line. The lower panel shows the

integrated dust mass. The inner radius of the disk is 0.35AU. The gray line shows the cumulative

solid mass of the planets in the solar system. The solid masses of each giant planets are set to

be 15M⊕ as in Hayashi (1981).

πd2L⊙/(4πR
2) = 4πd2σT 4, (2.28)

where σ is the Stefan-Boltzmann constant and R is the distance to the star. The stellar

luminosity is set to be the solar value (L⊙ = 3.83×1033erg/sec). From the above equation,

the disk temperature and the isothermal sound speed are evaluated as

T =

(
L⊙

16πσR2

)1/4

= 280(R/1AU)−1/2K, (2.29)

cs = 1.2(R/1AU)−1/4 km/sec, (2.30)

where the mean molecular weight is set to be 2.3 and the heat capacity ratio is 1.4.

• Disk surface density (the minimum value for formation of the planets）
Σgas = 1700(R/1AU)−3/2 g/cm2, (2.31)

Σdust =


7 (R/1AU)−3/2 g/cm2 (R < 2.7AU, silicate dust),

28 (R/1AU)−3/2 g/cm2 (R > 2.7AU, silicate & ice).

(2.32)
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• Mass of the gas disk:　Mdisk =

∫ 50AU

0
Σgas 2πRdR ≃ 0.017M⊙

Dust mass ≃ 2.3× 10−4M⊙（about 80 Earth masses)

• Toomre’s Q-value

Q = 66 (R/1AU)−1/4 (2.33)

Therefore, the Hayashi model disk is stable against self-gravitational instability. Note that

the Q-value decreases outside the disk. A more massive disk can become gravitationally

unstable in the outer part.

• Disk thichness

The scale height of the gas disk is given by h = cs/Ω, where cs is the isothermal sound

velocity with γ = 1. The disk aspect ratio h/R is ≃ 1/30(R/1AU)1/4.

Problem 1.

1. • Calculate the Jeans length and the Jeans mass for a molecular cloud with the hydrogen

number density of 100 cm−3 and temperature of 10K.

• Derive the temperature of Eq. (2.30) the sound velocity of Eq. (2.30) for the Hayashi

model disk with the mean molecular weight of 2.3. Also calculate Toomre’s Q-value

for the Hayashi model disk, assuming that κ = Ω.

2. Derive Eqs. (2.17) and (2.19).

3. The Roche limit (radius) is given by

RRoche ≃ 2.4RM (ρM/ρm)1/3, (2.34)

where RM and ρM are the radius and the average density of the central star, respectively;

and ρm is the average density of the secondary orbiting the central star. If the secondary

orbits its central star outside the Roche limit, it can avoid tidal disruption due to its

self-gravity. Show that this condition is similar to Toomre’s stability condition. (Hint:

The mass of the central star is M = 4π
3 ρMR3

M . The disk density is related to the surface

density with ρ ∼ Σ/h.)

4. The Q-value of the galactic disk in the vicinity of the Sun: Near the Sun (at 8 kpc from

the galactic center), the sum of the densities of stars and interstellar gas is estimated to

be ∼ 0.1 M⊙ pc−3. The surface density Σ of the galactic disk can be roughly estimated by

multiplying this density by the thickness h. Assuming the rotation speed of the galactic

disk to be 200 km/s and approximating κ = Ω′, we can estimate the Q-value of the galactic

disk in the vicinity of the Sun (the solar mass is 2× 1030kg, 1pc = 3× 1016m). The result

will be Q ∼ 1. This is consistent with the theory that the spiral structure of the galactic

disk is formed by gravitational instability.
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3 Evolution and structure of accretion disk

Accretion disks around black holes and protoplanetary disks evolve due to viscosity. Here we

describe the evolution of viscous accretion disks. An accretion disk rotates around its host

star at approximately Keplerian angular velocity. It is a differential rotation, where the inner

part rotates rapidly and the outer part rotates slowly. When viscosity acts on a differentially

rotating disk, the rapidly rotating inner disk material experiences a negative torque from the

outer material and slows down. Thus, viscosity transfers angular momentum from the inner disk

to the outer disk. The inner disk loses the angular momentum and falls inward, while the outer

disk expands outward. This results in mass accretion onto the host star, reducing the disk mass

and increasing the disk radius.

3.1 Basic equations for accretion disks

We examine the evolution of the viscous accretion disk in detail using the hydrodynamical

equations with the addition of viscous effects. We consider an axi-symmetric disk, which is

assumed here to be a two-dimensional disk. To describe the disk, we use the polar coordinate

system (r, ϕ) with the host star at the origin. For two-dimensional axi-symmetric disks, the

equation of continuity (2.1) is rewritten as

∂Σ

∂t
+

1

r

∂

∂r
(rΣvr) = 0. (3.1)

We do not consider any inflow onto the disk or outflow except the accretion onto the host star.

For accretion disks, we use the Navier-Stokes equation with the viscosity term instead of the

Euler equation. Around a host star, the Navier-Stokes equation is given by

∂v

∂t
+ (v · grad)v = −1

ρ
grad p+ grad

(
GMc

r

)
+

1

ρ
divΠ′ (3.2)

where Π′ is the viscous stress tensor given by3

Π′
ij = ρν

(
∂vi
∂xj

+
∂vj
∂xi

)
(3.3)

where ν is the kinetic viscosity. We do not consider any external forces other than the gravity of

the host star. For two-dimensional axi-symmetric disks, the ϕ-component of the Navier-Stokes

equation is rewritten as4

∂vϕ
∂t

+ vr
∂vϕ
∂r

+
vrvϕ
r

=
1

Σ

(
1

r

∂ rΠ′
rϕ

∂r
+

Π′
rϕ

r

)
(3.4)

and the r, ϕ-component of the viscous stress, Π′
rϕ, is given for two-dimensional disks by

Π′
rϕ = Σν

(
∂vϕ
∂r

−
vϕ
r

)
= Σνr

dΩ

dr
. (3.5)

3For accretion disks, the gas velocity in the frame rotating with the disk is smaller than the sound speed and

we can assume the incompressible fluid.
4In the polar coordinate system, the term of (v · grad)v has additional terms −eRv

2
ϕ/R + eϕvRvϕ/R and

the latter one appears in the equation (3.4). Since the velocity vector is expressed as v = vReR + vϕeϕ, the

gradient operates on the basis vectors as well as the velocity components. Noting this, and using ∂eR/∂ϕ = eϕ

and ∂eϕ/∂ϕ = −eR, we can obtain the additional terms above. The additional term of the viscosity term in the

equation (3.4) and that of the viscous stress in the equation (3.5) are also derived in the same way.
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By the definition of the viscous stress, Π′
rϕ(r) represents the ϕ component of the force (per unit

length) exerted on the inner disk material by the outer material tangent to the inner material at

R. The angular velocity of the disk, Ω, is determined by the balance mainly between the stellar

gravity and centrifugal force in the radial component of the equation (3.2) and is approximately

given by ΩK. As seen in the equation (3.5), the sign of the viscous stress Π′
Rϕ is determined

by the gradient of Ω. In a uniformly rotating disk with constant Ω, the viscous stress does not

work. In Keplerian disks with ΩK, the negative viscous torque is exerted on the inner material

by the outer material.

The angular momentum conservation equation for accretion disks is obtained from the equa-

tions (3.1), (3.4), and (3.5) as

∂

∂t
(Σ j) +

1

r

∂

∂r

(
rΣ jvr − r3Σν

dΩ

dr

)
= 0, (3.6)

where j (=R2Ω) is the specific angular momentum. The second term in the left-hand side of

the equation (3.6) is the divergence of the radial angular momentum flux (density). The first

term of the angular momentum flux shows the flux due to advection and the second is that due

to the viscous torque. Using the equations (3.1) and (3.6), and noting that ∂j/∂t = 0, we also

obtain vR and the inward mass flux (i.e., the accretion rate) of the disk as

Ṁ ≡ −2πrΣ vr = − 2π

(dj/dr)

∂

∂r

(
r3Σ ν

dΩ

dr

)
. (3.7)

Substituting this into the equation (3.1), we finally obtain the equation describing the viscous

evolution of accretion disks as

∂Σ

∂t
+

1

r

∂

∂r

[
1

(dj/dr)

∂

∂r

(
r3Σν

dΩ

dr

)]
= 0. (3.8)

For a disk in Keplerian rotation with Ω = ΩK, it is reduced to

∂Σ

∂t
− 3

r

∂

∂r

[
r1/2

∂

∂r

(
r1/2νΣ

)]
= 0. (3.9)

The viscosity of accretion disks is determined by the turbulent viscosity, not the molecular

viscosity. The origin of the turbulence has not yet been determined for protoplanetary disks,

although magneto-rotational instability and self-gravitational instability are strong candidates,

and the magnitude of the viscosity has a large uncertainty. Therefore the kinetic viscosity of

accretion disks is often expressed in terms of a non-dimensional parameter as

ν = αh2Ω. (3.10)

This simple expression for the viscosity is known as the Shakura-Sunyaev α prescription and α

is called Shakura-Sunyaev α parameter (Shakura & Sunyaev, 1973).

3.2 Solution for steady-state accretion disks

We consider a steady solution for (inward) accreting disks. Setting ∂/∂t = 0 in the equa-

tions (3.8) and (3.6), we obtain the mass and angular momentum fluxes as

Ṁ = const., (3.11)

J̇ ≡ jṀ+ 2πr3Σν
dΩ

dr
= const. (3.12)
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Note that inward fluxes are defined to be positive. For accretion disks, thus, Ṁ is positive.

Furthermore, assuming Σ = 0 at the inner disk edge rin as the inner boundary condition, we

obtain

J̇ = Ṁj(rin). (3.13)

Thus the angular momentum flux is negative in steady accretion disks. Substituting this into

the equation (3.12), we obtain the steady surface density as

Σ = −Ṁ j(r)− j(rin)

2πνr3(dΩ/dr)
. (3.14)

For Keplerian disks, it is rewritten as

Σ =
Ṁ
3πν

(
1−

√
rin
r

)
. (3.15)

3.3 Similarity solution for accretion disks

Next we consider a time-evolving solution to equation (3.9). Suppose that the kinematic viscosity

is given by a power-law function

ν = ν0R
γ . (3.16)

In this case, it is known that there exists a similarity solution (Lynden-Bell & Pringle 1974).

In the similarity solution for an accretion disk, the disk radius and surface density evolve with

time, but the surface density distribution remains in a similar form.

(a) Dimensional analysis for evolution of accretion disks

The time evolution of the similarity solution can be clarified by dimensional analysis. An

accretion disk spreads due to viscosity and its radius Rd increases. Suppose that the disk is

formed at t = 0 in a small size and then spreads out due to the viscous effect. Since the

equation (3.9) is a second-order differential equation for space and has the form of a diffusion

equation, time t is approximately equal to the viscous diffusion time of the disk, R2
d/ν(Rd).

Then, also using the equation (3.16), the radius of the disk is approximately given by a power-

law function of time as

Rd ≃ (ν0t)
1

2−γ . (3.17)

Note that ν0 does not have the dimension of the diffusion coefficient [cm2s−1].

In the similarity solution, the inner edge radius Rin is assumed to be much smaller than the

disk radius. Since the angular momentum flux at the inner edge is also negligibly small, the total

angular momentum, Jd, of the disk is conserved. We can use the constant Jd to estimate the

evolution of the disk mass. Estimating the characteristic value of the specific angular momentum

of the disk as R2
dΩ(Rd), the disk mass Md is approximately given by

Md ≃ Jd
R2

dΩ(Rd)
∝ t

− 1
2(2−γ) . (3.18)

In the above, the time dependence is derived using Ω ∝ R−3/2. Furthermore, the characteristic

value of the disk surface density can be estimated as

Σ(Rd(t), t) ≃
Jd

R4
dΩ(Rd)

∝ t
− 5

2(2−γ) . (3.19)

12



The similarity solution for the surface density also depend on a non-dimensional “similarity”

variable, y = r2−γ/(ν0t) ≃ (r/Rd)
2−γ . The surface density distribution of the disk is determined

by its y-dependence.

(b) Exact form of the similarity solution

The similarity solution to (3.9) is written as (Lynden-Bell & Pringle 1974; Hartmann et al. 1998;

see also Appendix for the derivation)

Σ(r, t) =
|Ṁd(t)|
3πν

exp

[
−
(

r

Rd(t)

)2−γ
]
, (3.20)

The disk radius Rd is given by

Rd =
[
3(2− γ)2ν0t

] 1
2−γ (3.21)

and the disk mass Md and its time derivative are

Md =
Jd

Γ(b)R2
dΩ(Rd)

, Ṁd = − Md

2(2− γ)t
, (3.22)

where b = (5−2γ)/(4−2γ) and Γ(b) is the Gamma function. We can see that these expressions

of the similarity solution are consistent with the above estimates by dimensional analysis. We

also find that the similarity solution (3.20) agrees with the steady solution (3.14) in the radial

range of rin ≪ r ≪ Rd. In this range Σ is proportional to 1/ν or r−γ , and it is exponentially

truncated at a radius Rd. The inward mass and angular momentum fluxes are written as

Ṁ = −2πrΣvr = 3πνΣ

[
1− 2(2− γ)

(
r

Rd

)2−γ
]
, (3.23)

J̇ = −6π(2− γ)jνΣ

(
r

Rd

)2−γ

, (3.24)

respectively. The angular momentum is always transferred outward in the similarity solution5.

The equation (3.23) also gives the radial velocity.

We estimate the life time of protoplanetary disks using the similarity solution. Adapting the

α prescription for the viscosity (equation [3.10]) and assuming a constant α and T ∝ r1/2, we

obtain ν ∝ r and γ = 1. The disk life time is approximately given by

td ≃
R2

d

3(2− γ)2ν
=

R2
d

3αh2Ω(Rd)
. (3.25)

If α = 10−3, the life time of a protoplanetary disk is estimated to be 5 Myr for the disk

with the radius of 100au (and h/Rd ≃ 0.1), which is almost consistent with the observed life

time of protoplanetary disks. Thus we expect that α = 10−3 might be the typical value for

protoplanetary disks. The second equation of (3.22) gives a simple relation between the mass

accretion rate and the disk mass. For a 1Myr old disk with the mass of 0.02M⊙, the mass

accretion rate is obtained as 10−8M⊙/yr, which is the typical value of the observed accretion

rate.

5Note that steady accretion disks have a small inward angular momentum flux (see eq. [7.41]). A realistic

accretion disk with a finite inner radius rin also has an inward angular momentum flux in the innermost part,

even though the angular momentum flux is outward in the most of the rest of the disk.
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(c) Derivation of the similarity solution

We briefly describe the derivation of the similarity solution. From the given parameters, ν0 and

Jd, and two independent variables, r and t, we can form only one dimensionless variable, which

can be written as

y =
r2

νt
=

r2−γ

ν0t
. (3.26)

The time and radial dependences of the similarity solution are described only by this dimension-

less variable y. The radial distribution of the angular momentum spreads out with the increase

in the disk radius, but its distribution in the y-space does not change due to the similarity. That

is, the angular momentum of the disk inside a radius r(y) that changes so that y =constant,

must remain constant. It is easy to write down the equation that expresses the constancy of this

angular momentum. The angular momentum flowing out of a radius r in unit time is given by

the angular momentum flux, −J̇ , which is defined by the equation (3.12). On the other hand,

since the radius r corresponding to a given y increases with the velocity of dr(y)
dt , an area inside

the radius r(y) increases in unit time by 2πr dr(y)
dt , and the angular momentum in this additional

area is jΣ2πr dr(y)
dt . These angular momenta equals due to constancy of the angular momentum

distribution in the y-space, and we obtain

Ṁ ≡ −2πrΣvr = 2πβνΣ

[
1− y

β(2− γ)

]
. (3.27)

Using Eqs. (3.21) and (3.26), we can see that this is equal to Eq. (3.23).

The solution of the surface density can be expressed as

Σ =
Jd

r4Ω(r)
f(y), (3.28)

where f(y) is a dimensionless function and the prefactor has the dimension of a surface density.

Substituting these expressions for Σ and vr into the equation (3.7), we obtain a differential

equation for f as d lnf/d lny = −y/[3(2− γ)2] + b. Solving this equation yields the solution

f =
2− γ

2πΓ(b)
xb exp(−x) (3.29)

with the new variable x = y/[3(2− γ)2], and also gives Σ. In the equation (3.29), the coefficient

is determined by the condition that the total angular momentum calculated with Σ should equal

Jd. Using this solution of Σ, we obtain the disk mass as the equation (3.22). Finally, using the

equation (3.22), the solution of Σ is rewritten as the equation (3.20).

Problem 2. Show that dr(y)/dt = νy/[(2− γ)r] and derive Eq. (3.27). Also derive the

differential equation for f(y) and its solution (3.29). Then, derive Eqs. (3.22) and (3.20), too.

Problem 3. The obtained similarity solution (3.20) is physically meaningless when the power-

law index γ of the viscosity is larger than 2. Find the physical reason why γ < 2 is required

for the similarity solution by explaining how the physical property of the disk evolution changes

between the cases with γ < 2 and γ > 2.

(ASIDE) A similarity solution had also been derived for accretion disks where the viscosity

also depends on the surface density as ν = ν(r,Σ) = ν0r
γΣδ (Pringle 1974, 1991; Cannizzo et

14



al. 1990)．Let us obtain such a similarity solution in the same way as above. Here we consider

Keplerian disks with Ω =
√
GM∗/r3.

Using the characteristic disk radius Rc, the characteristic value of the surface density Σc is

given by Σc = Jd/[R
4
cΩ(Rc)]. The characteristic disk radius Rc also satisfies R2

c = tν(Rc,Σc).

Then, we obtain Rc(t) = [(Jd/
√
GM∗)

δν0t]
1/a, where a = 2− γ + 5

2δ (cf. eq. [3.17]).

In this case, the dimensionless variable y is defined by y ≡ r2/[tν(r,Σr)] = [r/Rc(t)]
a, where

Σr = Jd/[r
4Ω(r)] (cf. eq. [3.26]). Solving this difinition of y for r yields r(y) = Rc(t)y

1/a. Then,

dr(y)/dt and the inward mass flux are given by

dr(y)

dt
=

ν(r,Σr)y

ar
, Ṁ = 3πνΣ

[
1− 2y

3a

(
Σ

Σr

)−δ
]
. (3.30)

The derivation is similar to that of Eq. (3.27).

The similarity solution is written as Σ = Σrf(y). From the equivalence of Eqs. (3.7) and

(3.30), we obtain the differential equation for f(y),
df δ

dy
−A

f δ

y
+B = 0, where A =

1 + 1
2a

1 + 1
δ

and

B =
1

3a2(1 + 1
δ )
. Solving this differential equation, we obtain the solution for the disk surface

density with the total angular momentum Jd as

Σ = C
Jd
r4Ω

(xA − x)1/δ, x =
B y

(1−A)Cδ
, C =

[
2π

a

∫ 1

0
(xA − x)1/δ

dx

x

]−1

. (3.31)

3.4 Disk heating by viscous dissipation

The dissipation energy due to viscosity per unit volume per unit time, ϵ, is given for axi-

symmetric Keplerian disks by (e.g., Landau & Lifshitz 1959, “Fluid Mechanics”)

ϵ = Π′
ik

∂vi
∂xk

= ρν

(
r
dΩ

dr

)2

=
9

4
ρνΩ2. (3.32)

Vertical integration gives the heating rate per unit area of the disk. It is balanced by the radiative

cooling rate at the upper and lower disk surfaces given by 2σT 4
s , where Ts is the temperature

at the disk surface. Furthermore, assuming a steady accretion disk, the surface temperature is

obtained as

Ts =

(
3GM∗Ṁ
8πσr3

)1/4

∝ r−3/4. (3.33)

It is assumed above that r ≫ rin. The mass accretion rate of Ṁ = 10−8M⊙/yr gives Ts = 90K at

1au. This is lower than the temperature of the Hayashi model for protoplanetary disks, which is

heated by the stellar radiation6. Since Ts has a steeper radial gradient than that of the Hayashi

model, the viscous heating can dominate the stellar radiation heating at an inner radius with

R ≪ 1au.

6The ratio between two temperatures given by the equations (3.33) and (2.29) is determined by the ratio of

the viscous heating rate to that by the stellar radiation, which given by

6GM∗Ṁ/r

L∗
≃ 10−2

(
Ṁ

10−8M⊙/yr

)(
M∗

M⊙

)(
L∗

L⊙

)−1 ( r

1au

)−1

.
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Optically thick protoplanetary disks can have an inner temperature much higher than Ts.

When the energy dissipation due to viscosity is concentrated to the disk midplane or uniformly

distributed (i.e., the dissipation rate ∝ ρ), the midplane temperature is approximately given by

∼ τ1/4Ts, where the vertical optical depth τ is defined by κRΣ and κR is the Rosseland mean

opacity of the disk material. However, if the viscous heating occurs only at the disk surface, the

midplane temperature is similar to Ts (Mori et al. 2019).

We also describe the energy balance at each radius of viscous accretion disks. Taking the

scalar product of the equation (3.2) with v, we obtain the equation for the kinetic energy per

unit mass as [
∂

∂t
+ (v · grad)

](
v2

2

)
= −1

ρ
v · grad p− v · grad

(
−GM∗

r

)
+

1

ρ
div (v ·Π′)− 1

ρ

∂vi
∂xk

Π′
ik. (3.34)

In the above equation, the term of the pressure gradient can be neglected since c2s ∼ p/ρ is

much smaller than the rotational energy of v2ϕ/2 = r2Ω2/2 for standard thin accretion disks.

Furthermore, since |vR| ≪ |vϕ|, the kinetic energy of v2/2 is replaced by v2ϕ/2 and only Π′
rϕ

should be considered for the viscous stress tensor. Thus the equation (3.34) can be rewritten

for two-dimensional disk as

−Ṁ ∂

∂r

(
r2Ω2

2

)
= Ṁ ∂

∂r

(
−GM∗

r

)
− ∂

∂r

(
3πΣνr2Ω2

)
− 2πrΣ

9

4
νΩ2. (3.35)

This equation describes the energy balance at each radius of steady viscous accretion disks.

Problem 4. The total viscous heating rate of an entire steady-state Keplerian accretion disk

around a central star with mass M∗ is expected to be given by 1/2(GM∗/Rin)Ṁd, since it is

supplied by the release of gravitational energy. Check that this prediction is valid by integrating

Eq. (3.32 over the entire disk. Assume that the inner edge of the disk, Rin, is sufficiently smaller

than the disk radius.

Problem 5. Derive Eq. (3.35) and explain the physical meaning of four terms in this equation.

Furthermore, caluculate the ratios between these four terms and explain the energy balance at

each radius of steady viscous accretion disks.

3.5 Disk dissipation

• Observational constraints on disk dispersion

– Disk lifetime ∼ 106-107yr.

– The relatively small number of disks in the dissipation process (i.e., transition disks)

indicates that the dissipation is rapid (∼ 105yr).

A dissipation mechanism other than gradual viscous evolution is required. −→ “Photo-

evaporation” is promising

• Disk dissipation due to photoevaporation

16



– FUV, EUV, and/or X-rays from the central star (or other stars) heat up the disk

surface (∼ 104K), which causes hydrodynamic escape.

– Photoevaporation occurs outside the critical radius rg.

rg =
GM∗
c2s

= 9

(
M∗
M⊙

)(
cs

10km/s

)−2

AU. (3.36)

– The disk evaporation rate due to photoevaporation is Ṁw = 10−9-10−7M⊙/yr, de-

pending the intensity of FUV, EUV, and/or X-rays.

4 Motion of Dust Particles and Dust Growth in Protoplanetary

Disks

• The initial state of dust is interstellar dust. The size distribution of interstellar dust

particles ranges from 5nm to 0.2µm, but most of the mass is carried by the upper size

limit (Mathis et al. 1977). Each of initial dust particles has a silicate core and an ice

mantle. They grow via sticking.

• As the turbulence in the planetary disk weakens, the dust particles settle to the mid-plane

of the disk, forming a dense dust layer.

→ Gravitational instability of the dust layer leads to the formation of planetesimals (Gol-

dreich and Ward 1973)．
• Small dust particles cannot settle due to even slight turbulent gas motion.

→ Dust growth is important.

4.1 Motion of Dust Particles

(a) Gas drag on dust particles

• Gas drag force
F drag = −mA(m)ρg∆v, (4.1)

where the coefficient A is given by the two expressions, depending on the size.

– Stokes’ law (a > 9l/4, l (= 1/[nH2σH2 ]) : gas mean free path)

A =
9vthl

4ρsolida2
=

√
8

π

9csl

4ρsolida2
, (4.2)

where vth =
√
8/πcs, F drag = −6πνaρg∆v, ν = vthl/2.

– Epstein’s law (a < 9l/4)

A =
vth

ρsolida
=

√
8

π

cs
ρsolida

. (4.3)

– General relation between A and CD

A =
3CD∆v

8ρsolida
. (For high Reynolds numbers or supersonic flows, CD ∼ 1)

(4.4)
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• Stopping time

tstop =
m∆v

|F drag|
=

1

Aρg
, F drag = −m∆v

tstop
. (4.5)

(b) Eqs. of motion for gas and dust (for steady, axisymetric, and non-self-gravitating disks）

• Gas velocity: v = (vR, vϕ = RΩ+ vϕ,1, vz)．(Ω = ΩK ≡
√

GMc/R3. B = −Ω/4.)

From Eq. (2.16), we have 0 −2Ω

−2B 0

 vR

vϕ,1

 =

 − 1

ρg

∂p

∂R

0

+ ρdA

 VR − vR

Vϕ,1 − vϕ,1

 . (4.6)

• Dust velocity: V = (VR, Vϕ = RΩ+ Vϕ,1, Vz) 0 −2Ω

−2B 0

 VR

Vϕ,1

 = − ρgA

 VR − vR

Vϕ,1 − vϕ,1

 . (4.7)

(c) Solution in the case where ρd ≪ ρg

• Gas vR = vz = 0, vϕ = (1− η)RΩ, (4.8)

η = − 1

2RΩ2ρg

∂p

∂R
= −1

2

( cs
RΩ

)2 ∂ ln p

∂ lnR
. (4.9)

• Dust VR = − 2tstopΩ

1 + (tstopΩ)2
ηRΩ, (4.10)

Vϕ − vϕ =
(tstopΩ)

2

1 + (tstopΩ)2
ηRΩ, (4.11)

Vz = − Ωz tstopΩ. (4.12)

(d) Solution for arbitrary gas-to-dust ratio ϵ = ρd/ρg (Nakagawa et al. 1986)(
vR

vϕ,1 + ηRΩ

)
=

ηRΩ

(1 + ϵ)2 + (tstopΩ)2

(
2 ϵ tstopΩ

ϵ(1 + ϵ)

)
. (4.13)

(
VR

Vϕ − vϕ

)
=

ηRΩ

(1 + ϵ)2 + (tstopΩ)2

(
−2 tstopΩ

(tstopΩ)
2

)
. (4.14)

4.2 Dust growth and settling

(a) Dust growth rate
dm

dt
= ρd σcol v, (4.15)

where the collision cross section σcol is equal to 4πa2 and the collison velocity v is assumed

to be comparable to the settling velocity Vz.

The growth time of dust particles is

tgrow = a/
da

dt
= 3m/

dm

dt
=

3mρgA

4πa2ρdzΩ2
∼ Σg

Σd
Ω−1. (4.16)
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In the above, z is set to be the thickness of the dust layer, and Epstein’s drag law (4.3) is

used. The obtained growth time for dust is independent of the particle size. The growth

time is estimated to be several ×104yrs even at ∼100AU, which is much shorter than the

disk lifetime. Thus, dust growth proceeds in a relatively short time.

(b) Dust settling

As dust particles grow, their settling velocity increases. When tgrow ≳ h/|Vz(h)|, dust
settling is effective. The formation time of the thin dust layer at the disk midplane is

∼ 10 tgrow.

(c) Thickness of the dust layer in a turbulent disk

The thickness of the dust layer, hd, is determined by the balance between the time scales

of stirring by turbulence and settling.

h2d
νt

∼ hd
|Vz(hd)|

. (4.17)

Then, setting νt = αcsh, we have

hd =

√
α

tstopΩ
h. (4.18)

In turbulent disks, the dust growth time of Eq. (4.16) is valid because the dust velocities

accelerated by turbulence are comparable to the settling velocities.

(d) Dust radial drift

• The dust drift velocities increase as dust particles grow. For dust particles with

tstopΩK ≃ 1, Eq. (4.10) gives

|VR| ≃ ηRΩ ≃ 50m/sec. (4.19)

• Radial drift time (for tstopΩK ≃ 1)

tdrift =
R

|VR|
≃ 1

ηΩ
≃ 100yr (at 1AU). (4.20)

Problem 6.

1. In Epstein’s drag law (4.3), the drag force is roughly given by Fdrag ∼ πa2ρgcs∆v. Derive

this with an order estimate.

2. Derive the velocities of gas and dust of Eqs. (4.8)-(4.11).

4.3 Mechanics of dust sticking

• The origin of adhesion is intermolecular forces, which are van der Waals forces (<0.01eV

in energy) for silicate grains or hydrogen bonds (∼0.1eV) for ice grains.

• The energy of adhesion between particles can be expressed by the macroscopic surface

energy γ [J/m2] as

Estick = − 2γπa2, (4.21)

where a is the radius of the contact surface between particles.
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• Radius of the contact surface

When two elastic spheres of radius R are in contact, the radius a of the contact surface (a

circle) is given by (JKR theory)

a ≃
(
14γR2

E

)1/3

, (4.22)

where E is the Young’s modulus [Pa = N/m2], which indicates the rigidity of the elastic

particle. Let us derive this equation with an order estimate. Using the displacement, u(r),

of each part of the particle, the elastic energy is given by

Eelastic ≃
∫

(stress)× du

dx
dV ≃

∫
1

2
E
(
du

dx

)2

dV ≃ 0.2 Ea5/R2. (4.23)

The third equality of the above equation is approximately derived, by estimating du/dx as

δ/a and using the geometric relation δ ∼ a2/R, where δ is the displacement of the surface.

The radius a is determined to minimize the total energy Estick +Eelastic, and Eq. (4.22) is

obtained.

• The binding energy due to adhesion can be obtained using the radius of Eq. (4.22) as

Ebond = |Estick + Eelastic| ≃ 20

(
γ5R4

E4

)1/3

. (4.24)

• Velocity limit for sticking

Equating the binding energy to the impact kinetic energy, and denoting the mass of the

particle by m, the maximum velocity for sticking, vcrit, is given by

vcrit ∼
(
Ebond

m

)1/2

∼

{
3(R/0.1µm)−5/6 m/sec (ice),

0.3(R/0.1µm)−5/6 m/sec (silicate).
(4.25)

Equation (4.25) is a rough estimate. The critical velocity for sticking is one order of

magnitude higher than the above estimate, according to more dedailed studies on dust

collisions via numerical simulations or laboratory experiments.

Table 1: Constants in dust adhesion

Surface energy γ [J/m2]　 Young’s modulus E [GPa]

silicate (SiO2)　 0.03（effective value） 50

ice 0.1 7
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